Publications by authors named "Pavel Makarevich"

As regenerative medicine continues to advance as a growing field in modern biology and the healthcare industry, it attracts enormous interest from the general public and scientists [...

View Article and Find Full Text PDF

Articular cartilage damage still remains a major problem in orthopedical surgery. The development of tissue engineering techniques such as autologous chondrocyte implantation is a promising way to improve clinical outcomes. On the other hand, the clinical application of autologous chondrocytes has considerable limitations.

View Article and Find Full Text PDF

Currently, various functionalized nanocarrier systems are extensively studied for targeted delivery of drugs, peptides, and nucleic acids. Joining the approaches of genetic and chemical engineering may produce novel carriers for precise targeting different cellular proteins, which is important for both therapy and diagnosis of various pathologies. Here we present the novel nanocontainers based on vectorized genetically encoded (Mx) encapsulin, confining a fluorescent photoactivatable mCherry (PAmCherry) protein.

View Article and Find Full Text PDF

Cell sheet (CS) engineering using mesenchymal stromal cells (MSC) draws significant interest for regenerative medicine and this approach translates to clinical use for numerous indications. However, little is known of factors that define the timing of CS assembly from primary cultures. This aspect is important for planning CS delivery in autologous and allogeneic modes of use.

View Article and Find Full Text PDF

Over the past few decades, the Earth's climate has been characterized by a stable increase in temperature, which in many regions leads to a change in the composition of flora and fauna. A striking manifestation of this process is the appearance in ecological communities of new, uncharacteristic for them, species of animals and plants. One of the most productive and at the same time the most vulnerable in this respect are the marine ecosystems of the Arctic.

View Article and Find Full Text PDF

Background: Combined non-viral gene therapy (GT) of ischemia and cardiovascular disease is a promising tool for potential clinical translation. In previous studies our group has developed combined gene therapy by vascular endothelial growth factor 165 () + hepatocyte growth factor (). Our recent works have demonstrated that a bicistronic pDNA that carries both human and coding sequences has a potential for clinical application in peripheral artery disease (PAD).

View Article and Find Full Text PDF
Article Synopsis
  • - Multipotent mesenchymal stem/stromal cells (MSC) can self-organize, which is crucial for tissue regeneration, and this ability has been utilized in tissue engineering through cell sheets (CS).
  • - The study explored MSC self-organization in CS, focusing on how the Rho-GTPase pathway influences cell density distribution and differentiation towards bone and cartilage rather than fat cells.
  • - RNA-sequencing revealed key transcriptional changes during MSC differentiation, linking the self-organization process to commitment and cell fate via specific molecular pathways like ROCK1/2 and SREBP, regulated by AMP kinase.
View Article and Find Full Text PDF

Modern biomedical science still experiences a significant need for easy and reliable sources of human cells. They are used to investigate pathological processes underlying disease, conduct pharmacological studies, and eventually applied as a therapeutic product in regenerative medicine. For decades, the pool of adult mesenchymal stem/stromal cells (MSCs) remains a promising source of stem and progenitor cells.

View Article and Find Full Text PDF

Besides certain exceptions, healing of most tissues in the human body occurs formation of scar tissue, rather than restoration of lost structures. After extensive acute injuries, this phenomenon substantially limits the possibility of lost function recovery and, in case of chronic injury, it leads to pathological remodeling of organs affected. Managing outcomes of damaged tissue repair is one of the main objectives of regenerative medicine.

View Article and Find Full Text PDF

Introduction: Prenatal hypoxia is a risk factor for the development of numerous neurological disorders. It is known that the maternal stress response to hypoxia determines the epigenetic impairment of the perinatal expression of glucocorticoid receptors (GR) in the hippocampus of the progeny, but so far no detailed study of how this affects the functional state of the glucocorticoid system during further ontogenesis has been performed.

Objective: The goal of the present study was to examine the long-term effects of the prenatal hypoxia on the functioning of the glucocorticoid system throughout life.

View Article and Find Full Text PDF

Prenatal hypoxia is among leading causes of progressive brain pathologies in postnatal life. This study aimed to analyze the characteristics of the hippocampal glutamatergic system and behavior of rats in early (2 weeks), adult (3 months) and advanced (18 months) postnatal ontogenesis after exposure to prenatal severe hypoxia (PSH, 180 Torr, 5% O2, 3 h) during the critical period in the formation of the hippocampus (days 14-16 of gestation). We have shown an age-dependent progressive decrease in the hippocampal glutamate levels, a decrease of the neuronal cell number in the CA1 hippocampal region, as well as impairment of spatial long-term memory in the Morris water navigation task.

View Article and Find Full Text PDF

Therapeutic angiogenesis is a promising strategy for relief of ischemic conditions, and gene delivery was used to stimulate blood vessels' formation and growth. We have previously shown that intramuscular injection of a mixture containing plasmids encoding vascular endothelial growth factor (VEGF)165 and hepatocyte growth factor (HGF) leads to restoration of blood flow in mouse ischemic limb, and efficacy of combined delivery was superior to each plasmid administered alone. In this work, we evaluated different approaches for co-expression of HGF and VEGF165 genes in a panel of candidate plasmid DNAs (pDNAs) with internal ribosome entry sites (IRESs), a bidirectional promoter or two independent promoters for each gene of interest.

View Article and Find Full Text PDF

Homeotic genes are universal regulators of the body patterning process in embryogenesis of metazoans. The gene expression pattern ( code) retains in adult tissues and serves as a cellular positional identity marker. Despite previously existing notions that the code is inherent in all stroma mesenchymal cells as a whole, recent studies have shown that the code may be an attribute of a distinct subpopulation of adult resident mesenchymal stromal cells (MSC).

View Article and Find Full Text PDF

We report a comparative study of multipotent mesenchymal stromal cells (MSC) delivered by injection, MSC-based cell sheets (CS) or MSC secretome to induce healing of cutaneous pressure ulcer in C57Bl/6 mice. We found that transplantation of CS from adipose-derived MSC resulted in reduction of fibrosis and recovery of skin structure with its appendages (hair and cutaneous glands). Despite short retention of CS on ulcer surface (3-7 days) it induced profound changes in granulation tissue (GT) structure, increasing its thickness and altering vascularization pattern with reduced blood vessel density and increased maturation of blood vessels.

View Article and Find Full Text PDF

The potential rapid advance of regenerative medicine was obstructed by findings that stimulation of human body regeneration is a much tougher mission than expected after the first cultures of stem and progenitor cells were established. In this mini review, we focus on the ambiguous role of growth factors in regeneration, discuss their evolutionary importance, and highlight them as the "cure and the cause" for successful or failed attempts to drive human body regeneration. We draw the reader's attention to evolutionary changes that occurred in growth factors and their receptor tyrosine kinases (RTKs) and how they established and shaped response to injury in metazoans.

View Article and Find Full Text PDF

Timely nerve restoration is an important factor for the successful regeneration of tissues and organs. It is known that axon regeneration following nerve injury is a multifactorial process that depends on the local expression of neurotrophins, including brain-derived neurotrophic factor (BDNF). Along with the survival of neurons, the active reorganization of the extracellular matrix is an important step for the growth of axons to their targets.

View Article and Find Full Text PDF

: Peripheral nerve regeneration requires coordinated functions of neurotrophic factors and neuronal cells. CRISPR activation (CRISPRa) is a powerful tool that exploits inactive Cas9 (dCas9), single guide RNA (sgRNA) and transcription activator for gene activation, but has yet to be harnessed for tissue regeneration. : We developed a hybrid baculovirus (BV) vector to harbor and deliver the CRISPRa system for multiplexed activation of 3 neurotrophic factor genes (, and ).

View Article and Find Full Text PDF

Cell therapy remains a promising approach for the treatment of cardiovascular diseases. In this regard, the contemporary trend is the development of methods to overcome low cell viability and enhance their regenerative potential. In the present study, we evaluated the therapeutic potential of gene-modified adipose-derived stromal cells (ADSC) that overexpress hepatocyte growth factor (HGF) in a mice hind limb ischemia model.

View Article and Find Full Text PDF

Regeneration is a fundamental process attributed to the functions of adult stem cells. In the last decades, delivery of suspended adult stem cells is widely adopted in regenerative medicine as a leading means of cell therapy. However, adult stem cells cannot complete the task of human body regeneration effectively by themselves as far as they need a receptive microenvironment (the niche) to engraft and perform properly.

View Article and Find Full Text PDF

Cell lines represent convenient models to elucidate specific causes of multigenetic and pluricausal diseases, to test breakthrough regenerative technologies. Most commonly used cell lines surpass diploid cells in their accessibility for delivery of large DNA molecules and genome editing, but the main obstacles for obtaining cell models with knockout-targeted protein from aneuploid cells are multiple allele copies and karyotype/phenotype heterogeneity. In the study, we report an original approach to CRISPR-/Cas9-mediated genome modification of aneuploid cell cultures to create functional cell models, achieving highly efficient targeted protein knockout and avoiding "clonal effect" (for the first time to our knowledge).

View Article and Find Full Text PDF

Since development of plasmid gene therapy for therapeutic angiogenesis by J. Isner this approach was an attractive option for ischemic diseases affecting large cohorts of patients. However, first placebo-controlled clinical trials showed its limited efficacy questioning further advance to practice.

View Article and Find Full Text PDF

Peripheral nerve regeneration requires coordinated functions of supporting cells (e.g. Schwann cells) and neurotrophic factors such as glial cell line-derived neurotrophic factor (GDNF), but nerve regeneration is usually far from complete.

View Article and Find Full Text PDF

Cell sheets (CS) from c-kit+ cardiac stem cell (CSC) hold a potential for application in regenerative medicine. However, manufacture of CS may require thermoresponsive dishes, which increases cost and puts one in dependence on specific materials. Alternative approaches were established recently and we conducted a short study to compare approaches for detachment of CS from c-kit+ CSC.

View Article and Find Full Text PDF