Precise control of cellular temperature at the microscale is crucial for developing novel neurostimulation techniques. Here, the effect of local heat on the electrophysiological properties of primary neuronal cultures and HEK293 cells at the subcellular level using a cutting-edge micrometer-scale thermal probe, the diamond heater-thermometer (DHT), is studied. A new mode of local heat action on a living cell, thermal-capture mode (TCM), is discovered using the DHT probe.
View Article and Find Full Text PDFCa-activated KCa3.1 channels are known to contribute to slow afterhyperpolarization in pyramidal neurons of several brain areas, while Ca-permeable AMPA receptors (CP-AMPARs) may provide a subthreshold source of Ca elevation in the cytoplasm. The functionality of these two types of channels has also been shown to be altered by epileptic disorders.
View Article and Find Full Text PDFOrganic semiconductor materials with a unique set of properties are very attractive for interfacing biological objects and can be used for noninvasive therapy or detection of biological signals. Here, we describe the synthesis and investigation of a novel series of organic push-pull conjugated molecules with the star-shaped architecture, consisting of triphenylamine as a branching electron donor core linked through the thiophene π-spacer to electron-withdrawing alkyl-dicyanovinyl groups. The molecules could form stable aqueous dispersions of nanoparticles (NPs) without the addition of any surfactants or amphiphilic polymer matrixes with the average size distribution varying from 40 to 120 nm and absorption spectra very similar to those of human eye retina pigments such as rods and green cones.
View Article and Find Full Text PDFGene therapy offers a potential alternative to the surgical treatment of epilepsy, which affects millions of people and is pharmacoresistant in ~30% of cases. Aimed at reducing the excitability of principal neurons, the engineered expression of K channels has been proposed as a treatment due to the outstanding ability of K channels to hyperpolarize neurons. However, the effects of K channel overexpression on cell physiology remain to be investigated.
View Article and Find Full Text PDFThis work aims to study the epigenetic mechanisms of regulating long-term context memory in the gastropod mollusk: . We have shown that RG108, an inhibitor of DNA methyltransferase (DNMT), impaired long-term context memory in snails, and this impairment can be reversed within a limited time window: no more than 48 h. Research on the mechanisms through which the long-term context memory impaired by DNMT inhibition could be reinstated demonstrated that this effect depends on several biochemical mechanisms: nitric oxide synthesis, protein synthesis, and activity of the serotonergic system.
View Article and Find Full Text PDFMemory formation is a complex process involving changes in the synaptic activity and gene expression encoding the insulin-like growth factors. We analyzed changes in the expression of genes encoding the insulin/insulin-like growth factors' proteins at the early period of learning in the CA1 region and dentate gyrus of the dorsal and ventral hippocampus in mice 1 hour after presentation of a new context (contextual fear conditioning) with and without negative reinforcement. It was found that in addition to changes in the expression of immediate early genes c-Fos (in all studied hippocampal fields) and Arc (in dorsal and ventral CA1, as well as in dorsal dentate gyrus), exposure to a new context significantly altered expression of the insulin receptor substrate 2 gene (Irs2) in dorsal CA1 and ventral dentate gyrus irrespectively of the negative reinforcement, which suggests participation of the insulin/IGF system in the early stages of neural activation during learning.
View Article and Find Full Text PDFThe search for strategies for strengthening the synaptic efficiency in Aβ-treated slices is a challenge for the compensation of amyloidosis-related pathologies. Here, we used the recording of field excitatory postsynaptic potentials (fEPSPs), nitric oxide (NO) imaging, measurements of serine/threonine protein phosphatase (STPP) activity, and the detection of the functional mitochondrial parameters in suspension of brain mitochondria to study the Aβ-associated signaling in the hippocampus. Aβ aggregates shifted the kinase-phosphatase balance during the long-term potentiation (LTP) induction in the enhancement of STPP activity.
View Article and Find Full Text PDFBiochemistry (Mosc)
September 2022
Astrocytes are the most common type of glial cells that provide homeostasis and protection of the central nervous system. Important specific characteristic of astrocytes is manifestation of morphological heterogeneity, which is directly dependent on localization in a particular area of the brain. Astrocytes can integrate into neural networks and keep neurons active in various areas of the brain.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
November 2022
Serotonin plays a decisive role in long-term synaptic plasticity and long-term memory in mollusks. Previously, we demonstrated that histone acetylation is a regulatory mechanism of long-term memory in terrestrial snail. At the behavioral level, many studies were done in Helix to elucidate the role of histone acetylation and serotonin.
View Article and Find Full Text PDFElectrophysiological and genetic studies reveal two major subclasses of layer 5 (L5) neocortical pyramidal neurons that differ in electrical parameters and afterhyperpolarization. KCa3.1 channels are identified as contributors to slow afterhyperpolarization (sAHP), and they are expressed by one subclass of L5 neurons.
View Article and Find Full Text PDFIn the current review, we aim to discuss the principles and the perspectives of using the genetic constructs based on AAV vectors to regulate astrocytes' activity. Practical applications of optogenetic approaches utilizing different genetically encoded opsins to control astroglia activity were evaluated. The diversity of astrocytic cell-types complicates the rational design of an ideal viral vector for particular experimental goals.
View Article and Find Full Text PDFThe mechanisms of synaptic plasticity differ in distinct local circuits. In the CA1 region of the hippocampus, the mechanisms of long-term potentiation (LTP) at apical dendrites in and basal dendrites in involve different molecular cascades. For instance, participation of nitric oxide in LTP induction was shown to be necessary only for apical dendrites.
View Article and Find Full Text PDFInsect odorant receptors (ORs) have been suggested to function as ligand-gated cation channels, with OrX/Orco heteromers combining ionotropic and metabotropic activity. The latter is mediated by different G proteins and results in Orco self-activation by cyclic nucleotide binding. In this contribution, we co-express the odor-specific subunits DmOr49b and DmOr59b with either wild-type Orco or an Orco-PKC mutant lacking cAMP activation heterologously in mammalian cells.
View Article and Find Full Text PDFDephosphorylation of target proteins at serine/threonine residues is one of the most crucial mechanisms regulating their activity and, consequently, the cellular functions. The role of phosphatases in synaptic plasticity, especially in long-term depression or depotentiation, has been reported. We studied serine/threonine phosphatase activity during the protein synthesis blocker (PSB)-induced impairment of long-term potentiation (LTP).
View Article and Find Full Text PDFLong-term potentiation (LTP) and long-term depression (LTD) are key forms of synaptic plasticity in the hippocampus. LTP and LTD are believed to underlie the processes occurring during learning and memory. Search of mechanisms responsible for switching from LTP to LTD and vice versa is an important fundamental task.
View Article and Find Full Text PDFSeveral recent studies showed that memory can be modulated by manipulating chromatin modifications using histone deacetylase (HDAC) inhibitors during memory formation, consolidation, and reconsolidation. We used a context fear conditioning paradigm with minimal non-painful current as a reinforcement, what elicited alertness to the context and freezing during tests in rats. Such paradigm resulted in a relatively weak memory in significant part of the rats.
View Article and Find Full Text PDFAstrocytes play a major role in brain function and alterations in astrocyte function that contribute to the pathogenesis of many brain disorders. The astrocytes are attractive cellular targets for neuroprotection and brain tissue regeneration. Development of novel approaches to monitor and to control astroglial function is of great importance for further progress in basic neurobiology and in clinical neurology, as well as psychiatry.
View Article and Find Full Text PDFPlacozoa are small disc-shaped animals, representing the simplest known, possibly ancestral, organization of free-living animals. With only six morphological distinct cell types, without any recognized neurons or muscle, placozoans exhibit fast effector reactions and complex behaviors. However, little is known about electrogenic mechanisms in these animals.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
July 2020
It is becoming increasingly clear that the long-term plasticity can be regulated via histone modifications. Many studies demonstrated the role of histone acetylation in acquisition, maintenance, and extinction of long-term memory. Nonetheless, the role of histone acetylation in memory reinstatement following its disruption by antimnemonic treatments was not studied in details.
View Article and Find Full Text PDFLynx1 is a GPI-tethered protein colocalized with nicotinic acetylcholine receptors (nAChRs) in the brain areas important for learning and memory. Previously, we demonstrated that at low micromolar concentrations the water-soluble Lynx1 variant lacking GPI-anchor (ws-Lynx1) acts on α7-nAChRs as a positive allosteric modulator. We hypothesized that ws-Lynx1 could be used for improvement of cognitive processes dependent on nAChRs.
View Article and Find Full Text PDFIn the present work, using in situ hybridization, we studied the expression patterns of three molluscan homologs of vertebrate immediate-early genes C/EBP, c-Fos, and c-Jun in the central nervous system (CNS) of terrestrial gastropod snail Helix. The molluscan C/EBP gene was described in literature, while c-Fos and c-Jun were studied in terrestrial snails for the first time. Localization of the expression was traced in normal conditions, and in preparations physiologically activated using stimulation of suboesophageal ganglia nerves.
View Article and Find Full Text PDFNitric oxide (NO) is a gaseous molecule with a large number of functions in living tissue. In the brain, NO participates in numerous intracellular mechanisms, including synaptic plasticity and cell homeostasis. NO elicits synaptic changes both through various multi-chain cascades and through direct nitrosylation of targeted proteins.
View Article and Find Full Text PDFIn the present study, we tested possible ways of modification of the context long-term memory using the reconsolidation as a tool. Recently, using a depletion of the serotonin content, it was shown that the reinforcing neurotransmitter serotonin is necessary for successful repeated reconsolidation of context memory in terrestrial snails Helix lucorum (Balaban et al. in Sci Rep 6:36933, 2016), and in the present study, we investigated effects of serotonin increase in memory maintenance by injection of the serotonin precursor 5-hydroxytryptophan (5-HTP).
View Article and Find Full Text PDFGenetically encoded fluorescent indicators typically consist of the sensitive and reporter protein domains connected with the amino acid linkers. The final performance of a particular indicator may depend on the linker length and composition as strong as it depends on the both domains nature. Here we aimed to optimize interdomain linkers in VSD-FR189-188-a recently described red fluorescent protein-based voltage indicator.
View Article and Find Full Text PDF