Publications by authors named "Pavel Leiderman"

Wild-type green fluorescent protein (wt-GFP) has a prominent absorbance band centered at approximately 395 nm, attributed to the neutral chromophore form. The green emission arising upon excitation of this band results from excited-state proton transfer (ESPT) from the chromophore hydroxyl, through a hydrogen-bond network proposed to consist of a water molecule and Ser205, to Glu222. Although evidence for Glu222 as a terminal proton acceptor has already been obtained, no evidence for the participation of Ser205 in the proton transfer process exists.

View Article and Find Full Text PDF

Steady-state emission, femtosecond pump-probe spectroscopy, and time-correlated single-photon counting (TCSPC) measurements were used to study the photophysics and the excited-state proton transfer (ESPT) reactions in the green fluorescent protein (GFP) variant S65T/H148D at three pH values: 6.0, 7.9, and 9.

View Article and Find Full Text PDF

We have studied the excited-state proton-transfer rate of four photoacids in ice as a function of temperature. For all four photoacids, we have found a non Arrhenius behavior of the proton-transfer rate constant, k(PT). d(ln k(PT))/d(1/T) decreases as the temperature decreases.

View Article and Find Full Text PDF

Time-resolved emission was used to measure the photoprotolytic cycle of an excited photoacid as a function of temperature, both in liquid water and in ice, in the presence of an inert salt. The inert salt affects the geminate recombination between the transferred proton with the conjugate base of the photoacid. We used the Debye-Hückel theory to express the screening of the Coulomb electrical potential by the inert salt.

View Article and Find Full Text PDF

The reversible proton dissociation and geminate recombination of the common photoacid, 8-hydroxypyrene-1,3,6-trisulfonate (pyranine), either in dilute aqueous solution or when forming a complex with gamma-cyclodextrin (gamma-CD), has been studied by time-resolved fluorescence spectroscopy and supplemented by molecular modeling and dynamics simulations. We find that the dissociation rate of the proton from the excited molecule was decreased to about approximately 50% of its value in water, while the rate of recombination was doubled. These observations were evaluated by molecular modeling of the reactants at atomic resolution.

View Article and Find Full Text PDF

In a previous work, we proposed an extended model for intermolecular excited-state proton transfer to the solvent. The model invoked an intermediate species, the contact ion-pair RO(-)..

View Article and Find Full Text PDF

The reversible proton dissociation and geminate recombination of a photoacid is studied as a function of temperature in water electrolyte solutions and binary water-methanol mixtures, containing 0.1 and 0.2 mole fractions of methanol.

View Article and Find Full Text PDF

Picosecond time-correlated single-photon counting was used to measure the proton-transfer rate of green fluorescent protein (GFP) excited by several wavelengths between 266 and 405 nm. When samples of GFP in water and D2O are excited at short wavelengths, lambda(ex) < 295 nm, the fluorescence properties are largely modified with respect to excitation at a wavelength around 400 nm, the peak of the absorption band of the S0 --> S1 transition of the ROH form of the chromophore. The shorter the excitation wavelength, the longer the decay time of the ROH emission band at 450 nm and the longer the rise time of the RO- emission band at 512 nm.

View Article and Find Full Text PDF

A femtosecond pump-probe, with approximately 150 fs resolution, as well as time-correlated single photon counting with approximately 10 ps resolution techniques are used to probe the excited-state intermolecular proton transfer from HPTS to water. The pump-probe signal consists of two ultrafast components (approximately 0.8 and 3 ps) that precede the relatively slow (approximately 100 ps) component.

View Article and Find Full Text PDF

The pressure dependence of the excited-state proton dissociation rate constant of four photoacids, 2-naphthol-6,8-disulfonate (2N68DS), 10-hydroxycamptothecin (10-CPT), 5-cyano-2-naphthol (5CN2), and 5,8-dicyano-2-naphthol (DCN2), are studied in methanol. The results are compared with the results of the pressure dependence study we recently conducted for several photoacids in water, ethanol, and propanol. The pressure dependence is explained using an approximate stepwise two-coordinate proton transfer model.

View Article and Find Full Text PDF

Time-resolved emission and steady-state fluorescence techniques are used to study the excited-state intermolecular proton transfer from 8-hydroxypyrene-1,3,6-trisulfonate (HPTS or pyranine) to water in the presence of inert salts, NaCl and MgCl(2). At low salt concentrations, up to about 0.5 M MgCl(2) or about 0.

View Article and Find Full Text PDF

In green fluorescent protein, photo-excitation leads to excited-state proton transfer from its chromophore, leaving behind a strongly fluorescing anion, while the proton is commonly thought to migrate internally to Glu-222. X-ray data show that the protein contains more extended hydrogen-bonded networks that can support proton migration (i.e.

View Article and Find Full Text PDF

Time-resolved and steady-state emission characterization of 10-hydroxycamptothecin reveals a rich but less complex proton-transfer behavior than its parent hydroxyquinoline. The electronic effect of the additional electron-withdrawing ring makes the excited-state both less basic and more acidic than the parent and adds to the class of high-acidity excited-state proton donors in photochemistry and photobiology.

View Article and Find Full Text PDF