The Euler characteristic i.e., the difference between the number of vertices |V| and edges |E| is the most important topological characteristic of a graph.
View Article and Find Full Text PDFDiscrete-state stochastic models are a popular approach to describe the inherent stochasticity of gene expression in single cells. The analysis of such models is hindered by the fact that the underlying discrete state space is extremely large. Therefore hybrid models, in which protein counts are replaced by average protein concentrations, have become a popular alternative.
View Article and Find Full Text PDFThe Euler characteristic χ=|V|-|E| and the total length L are the most important topological and geometrical characteristics of a metric graph. Here |V| and |E| denote the number of vertices and edges of a graph. The Euler characteristic determines the number β of independent cycles in a graph while the total length determines the asymptotic behavior of the energy eigenvalues via Weyl's law.
View Article and Find Full Text PDFA widely used approach to describe the dynamics of gene regulatory networks is based on the chemical master equation, which considers probability distributions over all possible combinations of molecular counts. The analysis of such models is extremely challenging due to their large discrete state space. We therefore propose a hybrid approximation approach based on a system of partial differential equations, where we assume a continuous-deterministic evolution for the protein counts.
View Article and Find Full Text PDF