Genetic programming can be used to identify complex patterns in financial markets which may lead to more advanced trading strategies. However, the computationally intensive nature of genetic programming makes it difficult to apply to real world problems, particularly in real-time constrained scenarios. In this work we propose the use of Field Programmable Gate Array technology to accelerate the fitness evaluation step, one of the most computationally demanding operations in genetic programming.
View Article and Find Full Text PDFWe demonstrate the use of dataflow technology in the computation of the correlation energy in molecules at the Møller-Plesset perturbation theory (MP2) level. Specifically, we benchmark density fitting (DF)-MP2 for as many as 168 atoms (in valinomycin) and show that speed-ups between 3 and 3.8 times can be achieved when compared to the MOLPRO package run on a single CPU.
View Article and Find Full Text PDF