Managing soil biodiversity using reduced tillage is a popular approach, yet soil bacteriobiomes in the agroecosystems of Siberia has been scarcely studied, especially as they are related to tillage. We studied bacteriobiomes in Chernozem under natural steppe vegetation and cropped for wheat using conventional or no tillage in a long-term field trial in the Novosibirsk region, Russia, by using the sequence diversity of the V3/V4 region of 16S rRNA genes. , , and summarily accounted for 80% of the total number of sequences, with alone averaging 51%.
View Article and Find Full Text PDFManaging soil biodiversity by reduced or no tillage is an increasingly popular approach. Soil mycobiome in Siberian agroecosystems has been scarcely studied; little is known about its changes due to tillage. We studied mycobiome in Chernozem under natural steppe vegetation and cropped for wheat by conventional or no tillage in a long-term field trial in West Siberia, Russia, by using ITS2 rDNA gene marker (Illumina MiSeq sequencing).
View Article and Find Full Text PDFSouthwest Siberia encompasses the forest-steppe and sub-taiga climatic zones and has historically been utilized for agriculture. Coinciding with predicted changes in climate for the region is the pressure of agricultural development; however, a characterization of the soil water and carbon dynamics is lacking. We assessed current soil water properties and soil organic carbon turnover in forests and grasslands for two sites that span the forest steppe and sub-taiga bioclimatic zones.
View Article and Find Full Text PDFSoils of high latitudes store approximately one-third of the global soil carbon pool. Decomposition of soil organic matter (SOM) is expected to increase in response to global warming, which is most pronounced in northern latitudes. It is, however, unclear if microorganisms are able to utilize more stable, recalcitrant C pools, when labile soil carbon pools will be depleted due to increasing temperatures.
View Article and Find Full Text PDF