Diatoms are single cell microalgae enclosed in silica exoskeletons (frustules) that provide inspiration for advanced hybrid nanostructure designs mimicking multi-scale porosity to achieve outstanding mechanical and optical properties. Interrogating the structure and properties of diatoms down to nanometer scale leads to breakthrough advances reported here in the nanomechanical characterization of Coscinodiscus oculus-iridis diatom pure silica frustules, as well as of air-dried and wet cells with organic content. Static and dynamic mode Atomic Force Microscopy (AFM) and in-SEM nanoindentation revealed the peculiarities of diatom response with separate contributions from material nanoscale behavior and membrane deformation of the entire valve.
View Article and Find Full Text PDFGa-ion micro-ring-core FIB-DIC evaluation of residual stresses in shot peened VT6 (Ti-6Al-4V) alloy was carried out and cross-validated against other non-destructive and semi-destructive residual stresses evaluation techniques, namely, the conventional sin2ψ X-ray diffraction and mechanical hole drilling. The Korsunsky FIB-DIC method of Ga-ion beam micro-ring-core milling within FIB-SEM with Digital Image Correlation (DIC) deformation analysis delivered spatial resolution down to a few micrometers, while the mechanical drilling of circular holes of ~2 mm diameter with laser speckle interferometry monitoring of strains gave a rough spatial resolution of a few millimeters. Good agreement was also found with the X-ray diffraction estimates of residual stress variation profiles as a function of depth.
View Article and Find Full Text PDFSiliceous diatom frustules represent an up-and-coming platform for a range of bio-assisted nanofabrication processes able to overcome the complexity and high cost of current engineering technology solutions in terms of negligibly small power consumption and environmentally friendly processing combined with unique highly porous structures and properties. Herein, the modification of diatomite - a soft, loose, and fine-grained siliceous sedimentary rock composed of the remains of fossilized diatoms - with gold nanoparticles using layer-by-layer technology in combination with a freezing-induced loading approach is demonstrated. The obtained composite structures are characterized by dynamic light scattering, extinction spectroscopy, scanning (SEM) and transmission electron microscopy (TEM), and photoacoustic imaging techniques, and tested as a platform for surface-enhanced Raman scattering (SERS) using Rhodamine 6G.
View Article and Find Full Text PDF