For the first time to our knowledge, multiwavelength, highly transient, single-pass stimulated Raman scattering with a low wavelength spacing on dual (stretching and bending) Raman modes in Sr(MoO)(WO) and Sr(MoO)(WO) solid solutions in a range of 1000-1300 nm (transparence window of biological tissue) under ultrafast chirped pulse laser pumping is comparatively investigated in the interests of multicolor two-photon imaging of a living tissue. For both the solid solutions, the optimum range (1-5 ps) of chirped pump pulse durations for multiwavelength Raman conversion on dual Raman modes was wider than for SrMoO (2-3 ps) due to the higher integral cross section of the bending Raman mode. Higher efficient SRS conversion took place at negative chirping of the pump pulse with its stretching from 0.
View Article and Find Full Text PDFThe generation of terahertz radiation in a photoconductive emitter based on nitrogen-doped single-crystal diamond was realized for the first time. Under 400 nm femtosecond laser pumping, the performance of diamond antennas with different dopant levels was investigated and compared with a reference ZnSe antenna. Terahertz waveforms and corresponding spectra were measured.
View Article and Find Full Text PDFForward stimulated Raman scattering (SRS) induced by focused 400 nm pulses chirped to different pulse durations is observed in water and heavy water. The first Stokes Raman peak shift is shown to be tunable in the range of ${{3500 {-} 4200}}\;{{\rm{cm}}^{- 1}}$ in water and ${{2450 {-} 3250}}\;{{\rm{cm}}^{- 1}}$ in heavy water. It is demonstrated that the Stokes peak shift increases for shorter pulse durations and higher intensities.
View Article and Find Full Text PDFHybrid organic-inorganic perovskites, while well examined for photovoltaic applications, remain almost completely unexplored in the terahertz (THz) range. These low-cost hybrid materials are extremely attractive for THz applications because their optoelectronic properties can be chemically engineered with relative ease. Here, we experimentally demonstrate the first attempt to apply solution-processed polycrystalline films of hybrid perovskites for the development of photoconductive terahertz emitters.
View Article and Find Full Text PDFThis publisher's note contains corrections to Opt. Lett.45, 5624 (2020)OPLEDP0146-959210.
View Article and Find Full Text PDFFor the first time, to the best of our knowledge, stimulated Raman scattering (SRS) of picosecond laser pulses without optical breakdown has been detected simultaneously (as the first Stokes and anti-Stokes paired components) at ∼3430 and ∼3000 vibrations of water OH band. These components were generated coaxially to the pump beam in the forward direction as axial and conical ring beams, respectively, when the pump beam was focused at the water-air interface. We suggest an explanation of these new SRS phenomena by non-collinear four-wave parametric interaction.
View Article and Find Full Text PDFFor the first time, to the best of our knowledge, we demonstrated a new type of Raman laser with asymmetrical cavity at the liquid-air interface. We observed an intriguing stimulated Raman scattering (SRS) threshold dependence when the pumping laser beam waist was transferred through the liquid-air interface, and we demonstrated a paradoxical 30-fold SRS threshold reduction in the vicinity of the water-air surface. The minimum SRS threshold was achieved when the pumping laser beam waist was located at the liquid surface.
View Article and Find Full Text PDF