Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline's unique feature, the lack of a backbone amide proton.
View Article and Find Full Text PDFChemokines exert their function by binding the GPCR class of receptors on leukocytes and cell surface GAGs in target tissues. Most chemokines reversibly exist as monomers and dimers, but very little is known regarding the molecular mechanisms by which the monomer-dimer equilibrium modulates in vivo function. For the chemokine CXCL8, we recently showed in a mouse lung model that monomers and dimers are active and that the monomer-dimer equilibrium of the WT plays a crucial role in regulating neutrophil recruitment.
View Article and Find Full Text PDFCXCL8 (interleukin-8) interacts with two receptors, CXCR1 and CXCR2, to activate leukocytes. Upon activation, CXCR2 internalizes very rapidly relative to CXCR1 ( approximately 90% versus approximately 10% after 5 min). The C termini of the receptors have been shown to be necessary for internalization but are not sufficient to explain the distinct kinetics of down-regulation.
View Article and Find Full Text PDF