Disabil Rehabil Assist Technol
November 2024
This study investigates the functionality and feasibility of a novel smart seat cushion system designed for wheelchair users with spinal cord injuries. The cushion, equipped with air cells that serve as both sensors and actuators, was tested on 24 participants for its real-time pressure mapping, automated pressure redistribution, and pressure offloading functions. A commercial pressure mat was concurrently used to validate the cushion's pressure modulation functions.
View Article and Find Full Text PDFDevelop an anthropomorphic model cushion rigid loading indenter with embedded sensors (AMCRLI-ES) to assess compression and shear forces at key locations such as trochanters and ischial tuberosities. The sensor design was optimized using finite element analysis. The AMCRLI-ES was designed with the same dimensions as specified in ISO 16840-2 tests.
View Article and Find Full Text PDFA sensorized air cell-based seat cushion system was developed to address the issues of loading magnitude and duration at a sitting interface to aid in reducing risk of sitting acquired pressure ulcers. This system is capable of pressure mapping, redistribution, and offloading which were verified using an anthropomorphic model and a human subject. The system is comprised of an air cell array cushion, a pneumatic control unit, and a graphical user interface.
View Article and Find Full Text PDF