Publications by authors named "Pavan Auluck"

Genetic risk variants for common diseases are predominantly located in non-coding regulatory regions and modulate gene expression. Although bulk tissue studies have elucidated shared mechanisms of regulatory and disease-associated genetics, the cellular specificity of these mechanisms remains largely unexplored. This study presents a comprehensive single-nucleus multi-ancestry atlas of genetic regulation of gene expression in the human prefrontal cortex, comprising 5.

View Article and Find Full Text PDF
Article Synopsis
  • Epigenetic clocks use DNA methylation to estimate biological age and have shown changes in aging for various neuropsychiatric conditions, but ADHD has not been studied in this context.
  • The researchers analyzed post-mortem brain tissue and peripheral samples from individuals with ADHD and controls to see if ADHD was linked to accelerated or delayed epigenetic aging.
  • Their findings revealed that ADHD did not significantly alter biological aging in brain or peripheral tissues, even when considering other psychiatric diagnoses and medication use.
View Article and Find Full Text PDF

The mediodorsal thalamus (MD) and adjacent midline nuclei are important for cognition and mental illness, but their cellular composition is not well defined. Using single-nucleus and spatial transcriptomics, we identified a conserved excitatory neuron gradient, with distinct spatial mapping of individual clusters. One end of the gradient was expanded in human MD compared to mice, which may be related to the expansion of granular prefrontal cortex in hominids.

View Article and Find Full Text PDF

Common variants in the MicroRNA 137 host gene MIR137HG and its adjacent gene DPYD have been associated with schizophrenia risk and the latest Psychiatric Genomics Consortium (PGC). Genome-Wide Association Study on schizophrenia has confirmed and extended these findings. To elucidate the association of schizophrenia risk-associated SNPs in this genomic region, we examined the expression of both mature and immature transcripts of the miR-137 host gene (MIR137HG) in the dorsolateral prefrontal cortex (DLPFC) and subgenual anterior cingulate cortex (sgACC) of postmortem brain samples of donors with schizophrenia and psychiatrically-unaffected controls using qPCR and RNA-Seq approaches.

View Article and Find Full Text PDF

The menopausal transition (MT) is associated with an increased risk for many disorders including neurological and mental disorders. Brain imaging studies in living humans show changes in brain metabolism and structure that may contribute to the MT-associated brain disease risk. Although deficits in ovarian hormones have been implicated, cellular and molecular studies of the brain undergoing MT are currently lacking, mostly due to a difficulty in studying MT in postmortem human brain.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how genetic variants in specific brain cell regulatory elements contribute to disease risk by analyzing chromatin accessibility in neurons and non-neurons from human brain samples.
  • Researchers found 34,539 open chromatin areas, with only 10.4% being common between neuron and non-neuron cells, indicating that genetic regulation varies by cell type.
  • By identifying 476 regulatory variants with functional impacts, the research enhances understanding of brain gene regulation and its link to diseases, offering valuable insights into potential therapeutic targets.
View Article and Find Full Text PDF

While epigenetic modifications have been implicated in ADHD through studies of peripheral tissue, to date there has been no examination of the epigenome of the brain in the disorder. To address this gap, we mapped the methylome of the caudate nucleus and anterior cingulate cortex in post-mortem tissue from fifty-eight individuals with or without ADHD. While no single probe showed adjusted significance in differential methylation, several differentially methylated regions emerged.

View Article and Find Full Text PDF

Non-coding variants increase risk of neuropsychiatric disease. However, our understanding of the cell-type specific role of the non-coding genome in disease is incomplete. We performed population scale (N=1,393) chromatin accessibility profiling of neurons and non-neurons from two neocortical brain regions: the anterior cingulate cortex and dorsolateral prefrontal cortex.

View Article and Find Full Text PDF

Non-coding variants increase risk of neuropsychiatric disease. However, our understanding of the cell-type specific role of the non-coding genome in disease is incomplete. We performed population scale (N=1,393) chromatin accessibility profiling of neurons and non-neurons from two neocortical brain regions: the anterior cingulate cortex and dorsolateral prefrontal cortex.

View Article and Find Full Text PDF

Age is a major common risk factor underlying neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Previous studies reported that chronological age correlates with differential gene expression across different brain regions. However, prior datasets have not disambiguated whether expression associations with age are due to changes in cell numbers and/or gene expression per cell.

View Article and Find Full Text PDF

Nucleotide variants in cell type-specific gene regulatory elements in the human brain are major risk factors of human disease. We measured chromatin accessibility in sorted neurons and glia from 1,932 samples of human postmortem brain and identified 34,539 open chromatin regions with chromatin accessibility quantitative trait loci (caQTL). Only 10.

View Article and Find Full Text PDF

Regional cellular heterogeneity is a fundamental feature of the human neocortex; however, details of this heterogeneity are still undefined. We used single-nucleus RNA-sequencing to examine cell-specific transcriptional features in the dorsolateral PFC (DLPFC) and the subgenual anterior cingulate cortex (sgACC), regions implicated in major psychiatric disorders. Droplet-based nuclei-capture and library preparation were performed on replicate samples from 8 male donors without history of psychiatric or neurologic disorder.

View Article and Find Full Text PDF

Recent postmortem transcriptomic studies of schizophrenia (SCZ) have shown hundreds of differentially expressed genes. However, the extent to which these gene expression changes reflect antipsychotic drug (APD) exposure remains uncertain. We compared differential gene expression in the prefrontal cortex of SCZ patients who tested positive for APDs at the time of death with SCZ patients who did not.

View Article and Find Full Text PDF

A new era of human postmortem tissue research has emerged thanks to the development of 'omics technologies that measure genes, proteins, and spatial parameters in unprecedented detail. Also newly possible is the ability to construct polygenic scores, individual-level metrics of genetic risk (also known as polygenic risk scores/PRS), based on genome-wide association studies, GWAS. Here, we report on clinical, educational, and brain gene expression correlates of polygenic scores in ancestrally diverse samples from the Human Brain Collection Core (HBCC).

View Article and Find Full Text PDF

Despite advances in identifying rare and common genetic variants conferring risk for ADHD, the lack of a transcriptomic understanding of cortico-striatal brain circuitry has stymied a molecular mechanistic understanding of this disorder. To address this gap, we mapped the transcriptome of the caudate nucleus and anterior cingulate cortex in post-mortem tissue from 60 individuals with and without ADHD. Significant differential expression of genes was found in the anterior cingulate cortex and, to a lesser extent, the caudate.

View Article and Find Full Text PDF

Background: The "central vein sign" (CVS), a linear hypointensity on T2*-weighted imaging corresponding to a central vein/venule, is associated with multiple sclerosis (MS) lesions. The effect of lesion-size exclusion criteria on MS diagnostic accuracy has not been extensively studied.

Objective: Investigate the optimal lesion-size exclusion criteria for CVS use in MS diagnosis.

View Article and Find Full Text PDF

Human insulin () gene diverged from the ancestral genes of invertebrate and mammalian species millions of years ago. We previously found that mouse insulin gene () isoforms are expressed in brain choroid plexus (ChP) epithelium cells, where insulin secretion is regulated by serotonin and not by glucose. We further compared human isoform expression in postmortem ChP and islets of Langerhans.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines gene expression differences in the subgenual anterior cingulate cortex (sgACC) among individuals with bipolar disorder, schizophrenia, major depression, and healthy controls, using RNA from 200 postmortem donors.
  • - Researchers found that while there were modest expression differences across disorders, case-case comparisons showed greater variations, with some gene transcripts displaying opposing expression patterns between diagnostic groups.
  • - The study highlights that certain rare gene transcripts linked to synapse formation and cell junctions are differentially expressed and suggests that common genetic variants associated with mental illness risk may influence these gene expressions, impacting our understanding of psychiatric diagnoses.
View Article and Find Full Text PDF

Background: Midbrain dopaminergic neurons (MDN) represent 0.0005% of the brain's neuronal population and mediate cognition, food intake, and metabolism. MDN are also posited to underlay the neurobiological dysfunction of schizophrenia (SCZ), a severe neuropsychiatric disorder that is characterized by psychosis as well as multifactorial medical co-morbidities, including metabolic disease, contributing to markedly increased morbidity and mortality.

View Article and Find Full Text PDF

Background: Plasmacytoid DCs (pDC) produce large amounts of type I IFN (IFN-I), cytokines convincingly linked to systemic lupus erythematosus (SLE) pathogenesis. BIIB059 is a humanized mAb that binds blood DC antigen 2 (BDCA2), a pDC-specific receptor that inhibits the production of IFN-I and other inflammatory mediators when ligated. A first-in-human study was conducted to assess safety, tolerability, and pharmacokinetic (PK) and pharmacodynamic (PD) effects of single BIIB059 doses in healthy volunteers (HV) and patients with SLE with active cutaneous disease as well as proof of biological activity and preliminary clinical response in the SLE cohort.

View Article and Find Full Text PDF

Aggregation of α-synuclein (α-syn) is neuropathologically and genetically linked to Parkinson's disease (PD). Since stereotypic cell-to-cell spreading of α-syn pathology is believed to contribute to disease progression, immunotherapy with antibodies directed against α-syn is considered a promising therapeutic approach for slowing disease progression. Here we report the identification, binding characteristics, and efficacy in PD mouse models of the human-derived α-syn antibody BIIB054, which is currently under investigation in a Phase 2 clinical trial for PD.

View Article and Find Full Text PDF

Dopamine transporters (DAT) are implicated in the pathogenesis and treatment of attention-deficit hyperactivity disorder (ADHD) and are upregulated by chronic treatment with methylphenidate, commonly prescribed for ADHD. Methylation of the DAT1 gene in brain and blood has been associated with DAT expression in rodents' brains. Here we tested the association between methylation of the DAT1 promoter derived from blood and DAT availability in the striatum of unmedicated ADHD adult participants and in that of healthy age-matched controls (HC) using Positron Emission Tomography (PET) and [ C]cocaine.

View Article and Find Full Text PDF

Synucleinopathies, including Parkinson's disease (PD), are associated with the misfolding and mistrafficking of alpha-synuclein (α-syn). Here, using an ascorbate peroxidase (APEX)-based labeling method combined with mass spectrometry, we defined a network of proteins in the immediate vicinity of α-syn in living neurons to shed light on α-syn function. This approach identified 225 proteins, including synaptic proteins, proteins involved in endocytic vesicle trafficking, the retromer complex, phosphatases and mRNA binding proteins.

View Article and Find Full Text PDF

Numerous genes and molecular pathways are implicated in neurodegenerative proteinopathies, but their inter-relationships are poorly understood. We systematically mapped molecular pathways underlying the toxicity of alpha-synuclein (α-syn), a protein central to Parkinson's disease. Genome-wide screens in yeast identified 332 genes that impact α-syn toxicity.

View Article and Find Full Text PDF

Calcineurin (CN) is a highly conserved Ca(2+)-calmodulin (CaM)-dependent phosphatase that senses Ca(2+) concentrations and transduces that information into cellular responses. Ca(2+) homeostasis is disrupted by α-synuclein (α-syn), a small lipid binding protein whose misfolding and accumulation is a pathological hallmark of several neurodegenerative diseases. We report that α-syn, from yeast to neurons, leads to sustained highly elevated levels of cytoplasmic Ca(2+), thereby activating a CaM-CN cascade that engages substrates that result in toxicity.

View Article and Find Full Text PDF