Publications by authors named "Paulsamy Muruganandam"

Adaptive network is a powerful presentation to describe different real-world phenomena. However, current models often neglect higher-order interactions (beyond pairwise interactions) and diverse adaptation types (cooperative and competitive) commonly observed in systems such as the human brain and social networks. This work addresses this gap by incorporating these factors into a model that explores their impact on collective properties such as synchronization.

View Article and Find Full Text PDF

We present a formula for determining synchronizability in large, randomized, and weighted simplicial complexes. This formula leverages eigenratios and costs to assess complete synchronizability under diverse network topologies and intensity distributions. We systematically vary coupling strengths (pairwise and three body), degree, and intensity distributions to identify the synchronizability of these simplicial complexes of the identical oscillators with natural coupling.

View Article and Find Full Text PDF

In the present article, we demonstrate the emergence and existence of the spiral wave chimera-like transient pattern in coupled ecological systems, composed of prey-predator patches, where the patches are connected in a three-dimensional medium through local diffusion. We explore the transition scenarios among several collective dynamical behaviors together with transient spiral wave chimera-like states and investigate the long time behavior of these states. The transition from the transient spiral chimera-like pattern to the long time synchronized or desynchronized pattern appears through the deformation of the incoherent region of the spiral core.

View Article and Find Full Text PDF

Formation of diverse patterns in spatially extended reaction-diffusion systems is an important aspect of study that is pertinent to many chemical and biological processes. Of special interest is the peculiar phenomenon of chimera state having spatial coexistence of coherent and incoherent dynamics in a system of identically interacting individuals. In the present article, we report the emergence of various collective dynamical patterns while considering a system of prey-predator dynamics in the presence of a two-dimensional diffusive environment.

View Article and Find Full Text PDF

We report a simple model of two drive-response-type coupled chaotic oscillators, where the response system copies the nonlinearity of the driver system. It leads to a coherent motion of the trajectories of the coupled systems that establishes a constant separating distance in time between the driver and the response attractors, and their distance depends upon the initial state. The coupled system responds to external obstacles, modeled by short-duration pulses acting either on the driver or the response system, by a coherent shifting of the distance, and it is able to readjust their distance as and when necessary via mutual exchange of feedback information.

View Article and Find Full Text PDF

Calculation of the Shannon information entropy (S) and its connection with the order-disorder transition and with inter-particle interaction provide a challenging research area in the field of quantum information. Experimental progress with cold trapped atoms has corroborated this interest. In the present work, S is calculated for the Bose-Einstein condensate (BEC) with dominant dipolar interaction for different dipole strengths, trap aspect ratios, and number of particles (N).

View Article and Find Full Text PDF

We investigate synchronization in a Kuramoto-like model with nearest neighbor coupling. Upon analyzing the behavior of individual oscillators at the onset of complete synchronization, we show that the time interval between bursts in the time dependence of the frequencies of the oscillators exhibits universal scaling and blows up at the critical coupling strength. We also bring out a key mechanism that leads to phase locking.

View Article and Find Full Text PDF

We show how a recently introduced statistic [Patil et al., Phys. Rev.

View Article and Find Full Text PDF