Transpulmonary pressure can be estimated using esophageal balloon (EB) catheters, which come in a variety of manufacturing configurations. We assessed the performance of novel polyurethane EB designs, Aspisafe NG and NG+, against existing alternatives. We created a biomechanical model of the chest cavity using a plastic chamber and an ex-vivo porcine esophagus.
View Article and Find Full Text PDFObjective: Pulsatile-flow veno-arterial extracorporeal membrane oxygenation (V-A ECMO) has shown encouraging results for microcirculation resuscitation and left ventricle unloading in patients with refractory cardiogenic shock. We aimed to comprehensively assess different V-A ECMO parameters and their contribution to hemodynamic energy production and transfer through the device circuit.
Methods: We used the i-cor® ECMO circuit, which composed of Deltastream DP3 diagonal pump and i-cor® console (Xenios AG), the Hilite 7000 membrane oxygenator (Xenios AG), venous and arterial tubing and a 1 L soft venous pseudo-patient reservoir.
Due to the high treatment costs associated with durable ventricular assist devices, an intra-ventricular balloon pump (IVBP) was developed to provide low-cost, short-term support for patients suffering from severe heart failure. It is imperative that intraventricular flow dynamics are evaluated with an IVBP to ensure stagnation points, and potential regions for thrombus formation, are avoided. This study used particle image velocimetry to evaluate flow patterns within the left ventricle of a simulated severe heart failure patient with IVBP support to assess left ventricle pulsatility as an indicator of the likelihood of flow stasis.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
May 2023
Due to the poor tribological properties of titanium (Ti) and its alloy Ti6Al4V (commonly used for ventricular assist devices manufacturing), diamond-like carbon (DLC) films with excellent anti-wear properties are pursued to improve the wear resistance of Ti and its alloys. Considering the effect of temperature on magnets inside pump impellers and workpiece deformation, DLC films are preferred to be prepared under low temperature. In this study, DLC films were prepared on Ti6Al4V alloys by periodic and continuous processes, and the corresponding maximum deposition temperature was 85 and 154°C, respectively.
View Article and Find Full Text PDFSimulators are expected to assume a prominent role in the process of design-development and testing of cardiovascular medical devices. For this purpose, simulators should capture the complexity of human cardiorespiratory physiology in a realistic way. High fidelity simulations of pathophysiology do not only allow to test the medical device itself, but also to advance practically relevant monitoring and control features while the device acts under realistic conditions.
View Article and Find Full Text PDFIntroduction: Trendelenburg position (TP) is used to transport gaseous emboli away from the cerebral region during cardiac surgery. However, TP effectiveness has not been fully considered when combined with varying the cardiopulmonary bypass (CPB) flow. This study simulated the supine and TP at different pump flows and assessed the trapped emboli and embolic load entering the aortic arch branch arteries (AABA).
View Article and Find Full Text PDFIntroduction: Varying the insertion depth of the aortic cannula during cardiopulmonary bypass (CPB) has been investigated as a strategy to mitigate cerebral emboli, yet its effectiveness associated with CPB flow is not fully understood. We compared different arterial cannula insertion depths and pump flow influencing air microemboli entering the aortic arch branch arteries (AABA).
Methods: A computational approach used a patient-specific aorta model to evaluate four cannula locations at (1) proximal arch, (2) mid arch, (3) distal arch, and (4) descending aorta.
Introduction: Peripheral veno-arterial extracorporeal membrane oxygenation (VA ECMO) creates a retrograde flow along the aorta competing with the left ventricle (LV) in the so-called 'mixing zone' (MZ). Detecting it is essential to understand which of the LV or the ECMO flow perfuses the upper body - particularly the brain and the coronary arteries - in case of differential hypoxemia (DH).
Methods: We described a mock circulation loop (MCL) that enabled experimental research on DH.
Ventricular suction is a frequent adverse event in patients with a ventricular assist device (VAD). This study presents a suction module (SM) embedded in a hybrid (hydraulic-computational) cardiovascular simulator suitable for the testing of VADs and related suction events. The SM consists of a compliant latex tube reproducing a simplified ventricular apex.
View Article and Find Full Text PDFExtracorporeal membrane oxygenation (ECMO) is used in critical care to manage patients with severe respiratory and cardiac failure. ECMO brings blood from a critically ill patient into contact with a non-endothelialized circuit which can cause clotting and bleeding simultaneously in this population. Continuous systemic anticoagulation is needed during ECMO.
View Article and Find Full Text PDFRotary ventricular assist devices (VADs) are frequently used to provide mechanical circulatory support to patients suffering from end-stage heart failure. Therefore, these devices and especially their pump impeller and housing components have stringent requirements on wear resistance and hemocompatibility. Various surface coatings have been investigated to improve the wear resistance or hemocompatibility of these devices.
View Article and Find Full Text PDFProduction of bonded permanent magnets (PMs) by processing a mixture of neodymium-iron-boron (Nd-Fe-B) (spherical and flake) and polyamide-12 powders using selective laser sintering (SLS) has focused on increasing the magnetic powder loading fraction to improve the magnetic performance of PMs. However, when using SLS to produce PMs from mixed feedstock, the likelihood of the areas between the magnetic particles being infiltrated by the liquefied binder inducing particle bonding is reduced as binder content is reduced. This decreases mechanical strength and introduces upper limits to the attainable loading fraction of the magnetic powder.
View Article and Find Full Text PDFIn vitro hemolysis testing is commonly used to determine hemocompatibility of ExtraCorporeal Membrane Oxygenation (ECMO). However, poor reproducibility remains a challenging problem, due to several unidentified influencing factors. The present study investigated potential factors, such as flow rates, the use of anticoagulants, and gender of blood donors, which could play a role in hemolysis.
View Article and Find Full Text PDFThe development of adult use right ventricular assist devices (RVADs) and pediatric left ventricular assist devices (pediatric LVADs) have significantly lagged behind compared to adult use left ventricular assist devices (LVADs). The HeartWare ventricular assist device (HVAD) intended to be used for adult's systemic support, is increasingly used off-label for adult pulmonary and pediatric systemic support. Due to different hemodynamics and physiology, however, the HVAD's hemocompatibility profiles can be drastically different when used in adult pulmonary circulation or in children, compared to its intended usage state, which could have a direct clinical and developmental relevance.
View Article and Find Full Text PDFDespite technological advances in ventricular assist devices (VADs) to treat end-stage heart failure, hemocompatibility remains a constant concern, with supraphysiological shear stresses an unavoidable reality with clinical use. Given that impeller rotational speed is related to the instantaneous shear within the pump housing, it is plausible that the modulation of pump speed may regulate peak mechanical shear stresses and thus ameliorate blood damage. The present study investigated the hemocompatibility of the HeartWare HVAD in three configurations typical of clinical applications: standard systemic support left VAD (LVAD), pediatric support LVAD, and pulmonary support right VAD (RVAD) conditions.
View Article and Find Full Text PDFDesign methods for large industrial pumps are well developed, but they cannot be relied upon when designing specialised miniature pumps, due to scaling issues. Therefore, the design and development phase of small pumps demand numerous experimental tests to ensure a viable prototype. Of initial interest is hydraulic design in the form of pump performance and efficiency curves.
View Article and Find Full Text PDFLimb ischemia is a major complication associated with peripheral venoarterial extracorporeal membrane oxygenation (VA-ECMO). The high velocity jet from arterial cannulae can cause "sandblasting" injuries to the arterial endothelium, with the potential risk of distal embolization and end organ damage. The aim of this study was to identify, for a range of clinically relevant VA-ECMO cannulae and flow rates, any regions of peak flow velocity on the aortic wall which may predispose to vascular injury, and any regions of low-velocity flow which may predispose to thrombus formation.
View Article and Find Full Text PDFDue to manufacturer implemented processing parameter restrictions and the cost prohibitive nature of selective laser sintering (SLS) machines, researchers have limited opportunities to explore the processing of new materials using this additive manufacturing (3D printing) process. Accordingly, this article aimed to overcome these limitations by describing the build and operation of a customizable low-cost polymer SLS machine. The machine boasts a three piston powder bed with the center build piston heated by PID controlled ceramic heaters.
View Article and Find Full Text PDFControlled and repeatable in vitro evaluation of cardiovascular devices using a mock circulation loop (MCL) is essential prior to in vivo or clinical trials. MCLs often consist of only a systemic circulation with no autoregulatory responses and limited validation. This study aimed to develop, and validate against human data, an advanced MCL with systemic, pulmonary, cerebral, and coronary circulations with autoregulatory responses.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Cardiac assist devices require thorough in vitro evaluation prior to in vivo animal trials, which is often undertaken in mock circulatory loops. To allow for best possible device development, mock circulatory loops need to be able to simulate a variety of patient scenarios. Transition from rest to exercise is one of the most commonly simulated patient scenarios, however, to validate in vitro exercise test beds, baseline data on how the healthy heart and circulatory system responds to exercise is required.
View Article and Find Full Text PDFIntroduction: Emboli events are associated with the aortic cannula insertion and final position in the ascending aorta. However, the impact of subtle changes in aortic cannula movement and flow influencing embolic transport throughout the aortic arch is not well understood. The present study evaluated the aortic cannula's outflow and orientation effect on emboli entering the aortic branch arteries.
View Article and Find Full Text PDFDue to improved durability and survival rates, rotary blood pumps (RBPs) are the preferred left ventricular assist device when compared to volume displacement pumps. However, when operated at constant speed, RBPs lack a volume balancing mechanism which may result in left ventricular suction and suboptimal ventricular unloading. Starling-like controllers have previously been developed to balance circulatory volumes; however, they do not consider ventricular workload as a feedback and may have limited sensitivity to adjust RBP workload when ventricular function deteriorates or improves.
View Article and Find Full Text PDF