This paper presents an artificial intelligence-based classification model for the detection of pulmonary embolism in computed tomography angiography. The proposed model, developed from public data and validated on a large dataset from a tertiary hospital, uses a two-dimensional approach that integrates temporal series to classify each slice of the examination and make predictions at both slice and examination levels. The training process consists of two stages: first using a convolutional neural network InceptionResNet V2 and then a recurrent neural network long short-term memory model.
View Article and Find Full Text PDFThis article presents an unsupervised method for segmenting brain computed tomography scans. The proposed methodology involves image feature extraction and application of similarity and continuity constraints to generate segmentation maps of the anatomical head structures. Specifically designed for real-world datasets, this approach applies a spatial continuity scoring function tailored to the desired number of structures.
View Article and Find Full Text PDF