We demonstrate numerical refocusing in coherent confocal laser scanning microscopy based on synthetic optical holography. In this physics-based approach, computational propagation is implemented on the complex signal recovered in synthetic holography, consistent with wave physics and the parameters of the microscope. An experimental demonstration is shown to restore an in-focus image of a test object from data acquired at several focal plane off-sets.
View Article and Find Full Text PDFRecently, so-called "superlenses", made from metamaterials that are structured on a length scale much less than an optical wavelength, have shown impressive diffraction-beating image resolution, but they use materials with negative dielectric responses, and they absorb much of the light in a way that seriously degrades both the resolution and brightness of the image. Here we demonstrate an alternative "quantum metamaterials" (QM) approach that uses materials structured at the nanoscale, i.e.
View Article and Find Full Text PDFAn unprecedented control of the spectral response of plasmonic nanoantennas has recently been achieved by designing structures that exhibit Fano resonances. This new insight is paving the way for a variety of applications, such as biochemical sensing and surface-enhanced Raman spectroscopy. Here we use scattering-type near-field optical microscopy to map the spatial field distribution of Fano modes in infrared plasmonic systems.
View Article and Find Full Text PDF