Conventional treatment of tuberculosis (TB) demands a long course therapy (6 months), known to originate multiple drug resistant strains (MDR-TB), which emphasizes the urgent need for new antituberculous drugs. The purpose of this study was to investigate a novel treatment for TB meant to improve patient compliance by reducing drug dosage frequency. Polymeric microparticles containing the synthetic analogue of neolignan, 1-phenyl-2-phenoxiethanone (LS-2), were obtained by a method of emulsification and solvent evaporation and chemically characterized.
View Article and Find Full Text PDFObjectives: The study's aims were to evaluate the antimycobacterial activity of 13 synthetic neolignan analogues and to perform structure activity relationship analysis (SAR). The cytotoxicity of the compound 2-phenoxy-1-phenylethanone (LS-2, 1) in mammalian cells, such as the acute toxicity in mice, was also evaluated.
Methods: The extra and intracellular antimycobacterial activity was evaluated on Mycobacterium tuberculosis H37Rv.
Brazil is blessed with a great biodiversity, which constitutes one of the most important sources of biologically active compounds, even if it has been largely underexplored. As is the case of the Amazon and Atlantic rainforests, the Brazilian marine fauna remains practically unexplored in the search for new biologically active natural products. Considering that marine organisms have been shown to be one of the most promising sources of new bioactive compounds for the treatment of different human diseases, the 8000 km of the Brazilian coastline represents a great potential for finding new pharmacologically active secondary metabolites.
View Article and Find Full Text PDF