Publications by authors named "Paulo Jannig"

Decline in mitochondrial function is linked to decreased muscle mass and strength in conditions like sarcopenia and type 2 diabetes. Despite therapeutic opportunities, there is limited and equivocal data regarding molecular cues controlling muscle mitochondrial plasticity. Here we uncovered that the mitochondrial mRNA-stabilizing protein SLIRP, in complex with LRPPRC, is a PGC-1α target that regulates mitochondrial structure, respiration, and mtDNA-encoded-mRNA pools in skeletal muscle.

View Article and Find Full Text PDF

A detailed understanding of molecular responses to a hypertrophic stimulus in skeletal muscle leads to therapeutic advances aimed at promoting muscle mass. To decode the molecular factors regulating skeletal muscle mass, we utilized a 24-h time course of human muscle biopsies after a bout of resistance exercise. Our findings indicate: (1) the DNA methylome response at 30 min corresponds to upregulated genes at 3 h, (2) a burst of translation- and transcription-initiation factor-coding transcripts occurs between 3 and 8 h, (3) changes to global protein-coding gene expression peaks at 8 h, (4) ribosome-related genes dominate the mRNA landscape between 8 and 24 h, (5) methylation-regulated MYC is a highly influential transcription factor throughout recovery.

View Article and Find Full Text PDF

Skeletal muscle atrophy is a morbidity and mortality risk factor that happens with disuse, chronic disease, and aging. The tissue remodeling that happens during recovery from atrophy or injury involves changes in different cell types such as muscle fibers, and satellite and immune cells. Here, we show that the previously uncharacterized gene and protein Zfp697 is a damage-induced regulator of muscle remodeling.

View Article and Find Full Text PDF

In cell biology, ribosomal RNA (rRNA) 2'-methyl (2'--Me) is the most prevalent posttranscriptional chemical modification contributing to ribosome heterogeneity. The modification involves a family of small nucleolar RNAs (snoRNAs) and is specified by box C/D snoRNAs (SNORDs). Given the importance of ribosome biogenesis for skeletal muscle growth, we asked if rRNA 2'--Me in nascent ribosomes synthesized in response to a growth stimulus is an unrecognized mode of ribosome heterogeneity in muscle.

View Article and Find Full Text PDF

Molecular control of recovery after exercise in muscle is temporally dynamic. A time course of biopsies around resistance exercise (RE) combined with -omics is necessary to better comprehend the molecular contributions of skeletal muscle adaptation in humans. Vastus lateralis biopsies before and 30 minutes, 3-, 8-, and 24-hours after acute RE were collected.

View Article and Find Full Text PDF

Objective: Skeletal muscle plasticity and remodeling are critical for adapting tissue function to use, disuse, and regeneration. The aim of this study was to identify genes and molecular pathways that regulate the transition from atrophy to compensatory hypertrophy or recovery from injury. Here, we have used a mouse model of hindlimb unloading and reloading, which causes skeletal muscle atrophy, and compensatory regeneration and hypertrophy, respectively.

View Article and Find Full Text PDF

Exercise training reduces the incidence of several cancers, but the mechanisms underlying these effects are not fully understood. Exercise training can affect the spleen function, which controls the hematopoiesis and immune response. Analyzing different cancer models, we identified that 4T1, LLC, and CT26 tumor-bearing mice displayed enlarged spleen (splenomegaly), and exercise training reduced spleen mass toward control levels in two of these models (LLC and CT26).

View Article and Find Full Text PDF

Muscular atrophy is a mortality risk factor that happens with disuse, chronic disease, and aging. Recovery from atrophy requires changes in several cell types including muscle fibers, and satellite and immune cells. Here we show that Zfp697/ZNF697 is a damage-induced regulator of muscle regeneration, during which its expression is transiently elevated.

View Article and Find Full Text PDF

Different formative pluripotent stem cells harboring similar functional properties have been recently established to be lineage neutral and germline competent yet have distinct molecular identities. Here, we show that WNT/β-catenin signaling activation sustains transient mouse epiblast-like cells as epiblast-like stem cells (EpiLSCs). EpiLSCs display metastable formative pluripotency with bivalent cellular energy metabolism and unique transcriptomic features and chromatin accessibility.

View Article and Find Full Text PDF

Mitochondria are the main consumers of oxygen within the cell. How mitochondria sense oxygen levels remains unknown. Here we show an oxygen-sensitive regulation of TFAM, an activator of mitochondrial transcription and replication, whose alteration is linked to tumours arising in the von Hippel-Lindau syndrome.

View Article and Find Full Text PDF

The peroxisome proliferator-activated receptor γ coactivator-1α (Ppargc1a) gene encodes several PGC-1α isoforms that regulate mitochondrial bioenergetics and cellular adaptive processes. Expressing specific PGC-1α isoforms in mice can confer protection in different disease models. This SnapShot summarizes how regulation of Ppargc1a transcription, splicing, translation, protein stability, and activity underlies its multifaceted functions.

View Article and Find Full Text PDF

Endurance exercise promotes skeletal muscle vascularization, oxidative metabolism, fiber-type switching, and neuromuscular junction integrity. Importantly, the metabolic and contractile properties of the muscle fiber must be coupled to the identity of the innervating motor neuron (MN). Here, we show that muscle-derived neurturin (NRTN) acts on muscle fibers and MNs to couple their characteristics.

View Article and Find Full Text PDF

Proprioceptive neurons (PNs) are essential for the proper execution of all our movements by providing muscle sensory feedback to the central motor network. Here, using deep single cell RNAseq of adult PNs coupled with virus and genetic tracings, we molecularly identify three main types of PNs (Ia, Ib and II) and find that they segregate into eight distinct subgroups. Our data unveil a highly sophisticated organization of PNs into discrete sensory input channels with distinct spatial distribution, innervation patterns and molecular profiles.

View Article and Find Full Text PDF

The molecular mechanisms underlying skeletal muscle mitochondrial adaptations induced by aerobic exercise (AE) are not fully understood. We have previously shown that AE induces mitochondrial adaptations in cardiac muscle, mediated by sympathetic stimulation. Since direct sympathetic innervation of neuromuscular junctions influences skeletal muscle homeostasis, we tested the hypothesis that β-adrenergic receptor (β-AR)-mediated sympathetic activation induces mitochondrial adaptations to AE in skeletal muscle.

View Article and Find Full Text PDF

Increasing exercise capacity promotes healthy aging and is strongly associated with lower mortality rates. In this study, we analyzed skeletal muscle transcriptomics coupled to exercise performance in humans and rats to dissect the inherent and response components of aerobic exercise capacity. Using rat models selected for intrinsic and acquired aerobic capacity, we determined that the high aerobic capacity muscle transcriptome is associated with pathways for tissue oxygenation and vascularization.

View Article and Find Full Text PDF
Article Synopsis
  • Exercise training was found to improve various health aspects in tumor-bearing rats with severe cancer cachexia, including running capability and muscle function, while also prolonging lifespan and reducing oxidative stress.
  • A specific protein, COPS2, was identified as significantly downregulated in the skeletal muscle of these cancer-afflicted rats, and exercise training helped normalize its levels.
  • The research suggests that COPS2 plays a crucial role in muscle cell response to cancer, and exercise could serve as a potential therapeutic approach to combat muscle wasting in cancer patients.
View Article and Find Full Text PDF

Objective: The liver is regularly exposed to changing metabolic and inflammatory environments. It must sense and adapt to metabolic need while balancing resources required to protect itself from insult. Peroxisome proliferator activated receptor gamma coactivator-1 alpha (PGC-1α) is a transcriptional coactivator expressed as multiple, alternatively spliced variants transcribed from different promoters that coordinate metabolic adaptation and protect against inflammation.

View Article and Find Full Text PDF

Background: Gene expression is an important process underpinning the acute and chronic adaptive response to resistance exercise (RE) training.

Purpose: To investigate the effect of training status on vastus lateralis muscle global transcriptome at rest and following acute RE.

Methods: Muscle biopsies of nine young men (age: 26(2) years; body mass: 69(9) kg; height 172(6) cm) who undertook RE training for 10 weeks were collected pre and 24 h post-RE in the untrained (W1) and trained (W10) states and analysed using microarray.

View Article and Find Full Text PDF

The role of tryptophan-kynurenine metabolism in psychiatric disease is well established, but remains less explored in peripheral tissues. Exercise training activates kynurenine biotransformation in skeletal muscle, which protects from neuroinflammation and leads to peripheral kynurenic acid accumulation. Here we show that kynurenic acid increases energy utilization by activating G protein-coupled receptor Gpr35, which stimulates lipid metabolism, thermogenic, and anti-inflammatory gene expression in adipose tissue.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigated how an intense session of aerobic exercise affects muscle contractile properties and whether N-acetylcysteine (NAC), an antioxidant, can help recover those effects.
  • - Rats' extensor digitorum longus and soleus muscles were tested after exercise, showing that these muscles produced less force post-exercise, but NAC treatment helped restore their strength.
  • - The findings suggest that NAC can enhance muscle performance and reduce fatigue in muscles that have undergone strenuous aerobic activity.
View Article and Find Full Text PDF

We previously reported that facilitating the clearance of damaged mitochondria through macroautophagy/autophagy protects against acute myocardial infarction. Here we characterize the impact of exercise, a safe strategy against cardiovascular disease, on cardiac autophagy and its contribution to mitochondrial quality control, bioenergetics and oxidative damage in a post-myocardial infarction-induced heart failure animal model. We found that failing hearts displayed reduced autophagic flux depicted by accumulation of autophagy-related markers and loss of responsiveness to chloroquine treatment at 4 and 12 wk after myocardial infarction.

View Article and Find Full Text PDF

We have recently demonstrated that NADPH oxidase hyperactivity, NF-κB activation, and increased p38 phosphorylation lead to atrophy of glycolytic muscle in heart failure (HF). Aerobic exercise training (AET) is an efficient strategy to counteract skeletal muscle atrophy in this syndrome. Therefore, we tested whether AET would regulate muscle redox balance and protein degradation by decreasing NADPH oxidase hyperactivity and reestablishing NF-κB signaling, p38 phosphorylation, and proteasome activity in plantaris muscle of myocardial infarcted-induced HF (MI) rats.

View Article and Find Full Text PDF
Article Synopsis
  • This study examined the effects of strength training (ST) before muscle injury (cryolesion) on muscle healing and response to low-level laser therapy (LLLT) in Wistar rats.
  • Results showed that prior ST improved muscle recovery 14 days after injury and enhanced the effectiveness of LLLT, leading to better healing outcomes.
  • Both ST and LLLT individually reduced inflammation markers and increased muscle-related gene expression, with combined treatments further boosting these effects.
View Article and Find Full Text PDF