Publications by authors named "Paulo J G Coutinho"

In this work, we study the coating process and coating quality of photoluminescent particles deposited on a glass surface in terms of particle distribution and associated film continuity. The dispersion process of commercial ZnS:Mn particles and YVO:Eu particles synthesized by microwave reactor in aqueous solutions onto solid surface was performed using an ultrasonic atomizer. Two methods of particle deposition were used, one by moving the substrates while spraying and in the second the substrates were not moved.

View Article and Find Full Text PDF

Supramolecular hydrogels, particularly low-molecular-weight peptide hydrogels, are promising drug delivery systems due to their ability to change the solubility, targeting, metabolism and toxicity of drugs. Magneto-plasmonic liposomes, in addition to being remotely controllable with the application of an external magnetic field, also increase the efficiency of encapsulated drug release through thermal stimulation, for example, with magnetic and optical hyperthermia. Thus, the combination of those two materials-giving magneto-plasmonic lipogels-brings together several functionalities, among which are hyperthermia and spatiotemporally controlled drug delivery.

View Article and Find Full Text PDF

Water pollution is a major environmental challenge. Due to the inefficiency of conventional wastewater treatment plants in degrading many organic complex compounds, these recalcitrant pollutants end up in rivers, lakes, oceans and other bodies of water, affecting the environment and human health. Semiconductor photocatalysis is considered an efficient complement to conventional methods, and the use of various nanomaterials for this purpose has been widely explored, with a particular focus on improving their activity under visible light.

View Article and Find Full Text PDF

This work reports on the design, development, and characterization of novel magneto-plasmonic elastic liposomes (MPELs) of DPPC:SP80 (85:15) containing MgCaFeO nanoparticles coupled with gold nanorods, for topical application of photothermal therapy (PTT). Both magnetic and plasmonic components were characterized regarding their structural, morphological, magnetic and photothermal properties. The magnetic nanoparticles display a cubic shape and a size (major axis) of 37 ± 3 nm, while the longitudinal and transverse sizes of the nanorods are 46 ± 7 nm and 12 ± 1.

View Article and Find Full Text PDF

Monitoring cell viability is critical in cell biology, pathology, and drug discovery. Most cell viability assays are cell-destructive, time-consuming, expensive, and/or hazardous. Herein, we present a series of newly synthesized 2,4,5-triaminopyrimidine derivatives able to discriminate between live and dead cells.

View Article and Find Full Text PDF

Nanotechnology has provided a new insight into cancer treatment by enabling the development of nanocarriers for the encapsulation, transport, and controlled release of antitumor drugs at the target site. Among these nanocarriers, magnetic nanosystems have gained prominence. This work presents the design, development, and characterization of magnetoliposomes (MLs), wherein superparamagnetic nanoparticles are coupled to the lipid surface.

View Article and Find Full Text PDF

Late diagnosis and systemic toxicity associated with conventional treatments make oncological therapy significantly difficult. In this context, nanomedicine emerges as a new approach in the prevention, diagnosis and treatment of cancer. In this work, pH-sensitive solid magnetoliposomes (SMLs) were developed for controlled release of the chemotherapeutic drug doxorubicin (DOX).

View Article and Find Full Text PDF

Superparamagnetic nanoparticles are of high interest for therapeutic applications. In this work, nanoparticles of calcium-doped manganese ferrites (CaMnFeO) functionalized with citrate were synthesized through thermally assisted oxidative precipitation in aqueous media. The method provided well dispersed aqueous suspensions of nanoparticles through a one-pot synthesis, in which the temperature and Ca/Mn ratio were found to influence the particles microstructure and morphology.

View Article and Find Full Text PDF

Supramolecular short peptide-based gels are promising materials for the controlled release of drugs ( chemotherapeutic drugs) owing to the biocompatibility and similarity to cell matrix. However, the drug encapsulation and control over its release, mainly the hydrophilic drugs, can be a cumbersome task. This can be overcome through encapsulation/compartmentalization of drugs in liposomes, which can also enable spatiotemporal control and enhanced drug release through a trigger, such as photothermia.

View Article and Find Full Text PDF

Multicore magnetic nanoparticles of manganese ferrite were prepared using carboxymethyl dextran as an agglutinating compound or by an innovative method using melamine as a cross-coupling agent. The nanoparticles prepared using melamine exhibited a flower-shape structure, a saturation magnetization of 6.16 emu/g and good capabilities for magnetic hyperthermia, with a specific absorption rate (SAR) of 0.

View Article and Find Full Text PDF

Self-assembled short peptide-based gels are highly promising drug delivery systems. However, implementing a stimulus often requires screening different structures to obtain gels with suitable properties, and drugs might not be well encapsulated and/or cause undesirable effects on the gel's properties. To overcome this challenge, a new design approach is presented to modulate the release of doxorubicin as a model chemotherapeutic drug through the interplay of (di)phenylalanine-coated magnetic nanoparticles, PEGylated liposomes and doxorubicin co-assembly in dehydropeptide-based gels.

View Article and Find Full Text PDF

Tanned leather can be attacked by microorganisms. To ensure resistance to bacteria on leather surfaces, protection solutions need to be developed, addressing both environmental issues and economic viability. In this work, chitosan nano/microparticles (CNP) and chitosan/silver nano/microstructures (CSNP), containing silver nanoparticles around 17 nm size, were incorporated into leather, obtained from the industrial process.

View Article and Find Full Text PDF

The development of stimuli-sensitive drug delivery systems is a very attractive area of current research in cancer therapy. The deep knowledge on the microenvironment of tumors has supported the progress of nanosystems' ability for controlled and local fusion as well as drug release. Temperature and pH are two of the most promising triggers in the development of sensitive formulations to improve the efficacy of anticancer agents.

View Article and Find Full Text PDF

Liposome-like nanoarchitectures containing manganese ferrite nanoparticles covered or decorated with gold were developed for application in dual cancer therapy, combining chemotherapy and photothermia. The magnetic/plasmonic nanoparticles were characterized using XRD, UV/Visible absorption, HR-TEM, and SQUID, exhibiting superparamagnetic behavior at room temperature. The average size of the gold-decorated nanoparticles was 26.

View Article and Find Full Text PDF

In bone tissue engineering, the development of advanced biomimetic scaffolds has led to the quest for biomotifs in scaffold design that better recreate the bone matrix structure and composition and hierarchy at different length scales. In this study, an advanced hierarchical scaffold consisting of silk fibroin combined with a decellularized cell-derived extracellular matrix and reinforced with carbon nanotubes was developed. The goal of the carbon nanotube-reinforced cell-derived matrix-silk fibroin hierarchical scaffolds is to harvest the individual properties of their constituents to introduce hierarchical capacity in order to improve standard silk fibroin scaffolds.

View Article and Find Full Text PDF

Multifunctional lipid nanocarriers are a promising therapeutic approach for controlled drug release in cancer therapy. Combining the widely used liposome structure with magnetic nanoparticles in magnetoliposomes allies, the advantages of using liposomes include the possibility to magnetically guide, selectively accumulate, and magnetically control the release of drugs on target. The effectiveness of these nanosystems is intrinsically related to the individual characteristics of the two main components-lipid formulation and magnetic nanoparticles-and their physicochemical combination.

View Article and Find Full Text PDF

Three barbiturate squaraine dyes derived from indolenine or benzothiazole, with different barbituric acid derivatives were prepared, characterized and photophysically evaluated by standard spectroscopic methods. As expectable for squaraines, these dyes showed narrow and intense absorption and emission bands in the Vis/NIR region. The interaction of synthesized dyes with bovine and human serum albumins (BSA and HSA) was also evaluated in phosphate buffer (PB).

View Article and Find Full Text PDF

The efficient photodegradation of textile dyes is still a challenge, especially considering resistant azo dyes. In this work, zinc/calcium mixed ferrite nanoparticles prepared by the sol-gel method were coupled with silver by a photodeposition method to enhance the photocatalytic potency. The obtained zinc/calcium ferrites are mainly cubic-shaped nanoparticles sized 15 ± 2 nm determined from TEM and XRD and an optical bandgap of 1.

View Article and Find Full Text PDF

Self-assembled peptide-based hydrogels are promising materials for biomedical research owing to biocompatibility and similarity to the extracellular matrix, amenable synthesis and functionalization and structural tailoring of the rheological properties. Wider developments of self-assembled peptide-based hydrogels in biomedical research and clinical translation are hampered by limited commercial availability allied to prohibitive costs. In this work a focused library of Cbz-protected dehydrodipeptides Cbz-L-Xaa-Z-ΔPhe-OH (Xaa= Met, Phe, Tyr, Ala, Gly) was synthesised and evaluated as minimalist hydrogels.

View Article and Find Full Text PDF

Currently, the nanoparticle functionalization effect on supramolecular peptide-based hydrogels remains undescribed, but is expected to affect the hydrogels' self-assembly and final magnetic gel properties. Herein, two different functionalized nanoparticles: citrate-stabilized (14.4 ± 2.

View Article and Find Full Text PDF

A major problem with magnetogels is the encapsulation of hydrophobic drugs. Magnetoliposomes not only provide these domains but also improve drug stability and avert the aggregation of the magnetic nanoparticles. In this work, two magnetoliposome architectures, solid and aqueous, were combined with supramolecular peptide-based hydrogels, which are of biomedical interest owing to their biocompatibility, easy tunability, and wide array of applications.

View Article and Find Full Text PDF

Despite the promising pharmacological properties of curcumin, the transport and effective release of curcumin is still a challenge. The advances in functionalized nanocarriers for curcumin have also been motivated by the anticancer activity of this natural compound, aiming at targeted therapies. Here, stealth (aqueous and solid) magnetoliposomes containing calcium-substituted magnesium ferrite nanoparticles, CaMgFeO (with = 0.

View Article and Find Full Text PDF

Multifunctional nanosystems combining magnetic and plasmonic properties are a promising approach for cancer therapy, allowing magnetic guidance and a local temperature increase. This capability can provide a triggered drug release and synergistic cytotoxic effect in cancer cells. In this work, nickel ferrite/gold nanoparticles were developed, including nickel ferrite magnetic nanoparticles decorated with plasmonic gold nanoparticles and core/shell nanostructures (with a nickel ferrite core and a gold shell).

View Article and Find Full Text PDF

Whey protein nanostructures can be used as vehicles for the incorporation of nutraceuticals (e.g., antioxidants or vitamins) aimed at the development of functional foods, because nanostructures provide greater protection, stability and controlled release to such nutraceuticals.

View Article and Find Full Text PDF

Supramolecular hydrogels are highly promising candidates as biomedical materials owing to their wide array of properties, which can be tailored and modulated. Additionally, their combination with plasmonic/magnetic nanoparticles to form plasmonic magnetogels further improves their potential in biomedical applications through the combination of complementary strategies, such as photothermia, magnetic hyperthermia, photodynamic therapy and magnetic-guided drug delivery. Here, a new dehydropeptide hydrogelator, Npx-l-Met-Z-ΔPhe-OH, was developed and combined with two different plasmonic/magnetic nanoparticle architectures, i.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session65pbmta26hh0aqmp4kr8o0dvora50ed2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once