Publications by authors named "Paulo J Dias"

Pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters play a key role in the simultaneous acquisition of resistance to a wide range of structurally and functionally unrelated cytotoxic compounds in yeasts. Pdr18 was proposed to transport ergosterol at the plasma membrane, contributing to the maintenance of adequate ergosterol content and decreased levels of stress-induced membrane disorganization and permeabilization under multistress challenge leading to resistance to ethanol, acetic acid and the herbicide 2,4-D, among other compounds. is a paralog of , first described as a determinant of resistance to the chemical mutagen 4-NQO.

View Article and Find Full Text PDF

Background: The food spoilage yeast species Zygosaccharomyces bailii exhibits an extraordinary capacity to tolerate weak acids, in particular acetic acid. In Saccharomyces cerevisiae, the transcription factor Haa1 (ScHaa1) is considered the main player in genomic expression reprogramming in response to acetic acid stress, but the role of its homologue in Z. bailii (ZbHaa1) is unknown.

View Article and Find Full Text PDF

Candida albicans and other pathogenic Candida species can develop resistance to clinical fungicides through active drug export mediated by multidrug efflux pumps, in particular by members of the drug:H(+) antiporter family 1 (DHA1). The DHA1 proteins encoded in the genomes of 31 hemiascomycetous strains from 25 species were identified and homology relationships between these proteins and the functionally characterised DHA1 in the model yeast Saccharomyces cerevisiae were established. Gene neighbourhood analysis allowed the reconstruction of sixteen DHA1 lineages conserved during the CTG complex species evolution.

View Article and Find Full Text PDF

Infections caused by opportunistic fungal pathogens have reached concerning numbers due to the increase of the immunocrompromised human population and to the development of antifungal resistance. This resistance is often attributed to the action of multidrug efflux pumps, belonging to the ATP-binding cassette (ABC) superfamily and the major facilitator superfamily (MFS). Although many studies have focused on the role of ABC multidrug efflux transporters, little is still known on the part played by the Drug:H(+) Antiporter (DHA) family of the MFS in this context.

View Article and Find Full Text PDF

Multidrug/Multixenobiotic resistance (MDR/MXR) is a widespread phenomenon with clinical, agricultural and biotechnological implications, where MDR/MXR transporters that are presumably able to catalyze the efflux of multiple cytotoxic compounds play a key role in the acquisition of resistance. However, although these proteins have been traditionally considered drug exporters, the physiological function of MDR/MXR transporters and the exact mechanism of their involvement in resistance to cytotoxic compounds are still open to debate. In fact, the wide range of structurally and functionally unrelated substrates that these transporters are presumably able to export has puzzled researchers for years.

View Article and Find Full Text PDF

Background: The Saccharomyces cerevisiae 14-spanner Drug:H+ Antiporter family 2 (DHA2) are transporters of the Major Facilitator Superfamily (MFS) involved in multidrug resistance (MDR). Although poorly characterized, DHA2 family members were found to participate in the export of structurally and functionally unrelated compounds or in the uptake of amino acids into the vacuole or the cell. In S.

View Article and Find Full Text PDF

Frequently, although not exclusively, multidrug resistance (MDR) results from the action of drug-efflux pumps, which are thought to be able to catalyze the active expulsion of several unrelated cytotoxic compounds out of the cell or their intracellular partitioning. The transporters of the major facilitator superfamily (MFS) presumably involved in MDR belong to the 12-spanner drug:H(+) antiporter DHA1 or to the 14- spanner drug:H(+) antiporter DHA2 families. The expression of most Saccharomyces cerevisiae DHA1 family members was found to confer broad chemoprotection.

View Article and Find Full Text PDF

Abstract Saccharomyces cerevisiae was used to uncover the mechanisms underlying tolerance and toxicity of the agricultural fungicide mancozeb, linked to cancer and Parkinson's disease development. Chemogenomics screening of a yeast deletion mutant collection revealed 286 genes that provide protection against mancozeb toxicity. The most significant Gene Ontology (GO) terms enriched in this dataset are associated to transcriptional machinery, vacuolar organization and biogenesis, intracellular trafficking, and cellular pH regulation.

View Article and Find Full Text PDF

FLR1 gene, encoding a multidrug resistance (MDR) transporter of the major facilitator superfamily (MFS) was found to confer resistance to the fungicide mancozeb in Saccharomyces cerevisiae. This agrochemical has been linked to the development of Parkinson disease and cancer. Yeast response to mancozeb was proved to involve the strong activation of FLR1 transcription (20-fold) during the fungicide-induced growth latency.

View Article and Find Full Text PDF