Publications by authors named "Paulo Godoi"

Selective inhibitors of DYRK1A are of interest for the treatment of cancer, Type 2 diabetes and neurological disorders. Optimization of imidazo [1,2-b]pyridazine fragment 1 through structure-activity relationship exploration and in silico drug design efforts led to the discovery of compound 17 as a potent cellular inhibitor of DYRK1A with selectivity over much of the kinome. The binding mode of compound 17 was elucidated with X-ray crystallography, facilitating the rational design of compound 29, an imidazo [1,2-b]pyridazine with improved kinase selectivity with respect to closely related CLK kinases.

View Article and Find Full Text PDF
Article Synopsis
  • - The study assessed the chemical composition and digestibility of various silages made from spineless cactus and tropical forages, examining their impact on sheep performance.
  • - Results indicated that silages containing spineless cactus plus other forages, particularly SCG and SCBG, had higher carbohydrate and protein content and greater digestibility compared to standalone corn or cactus silages.
  • - Feeding sheep with SCG and SCS silages resulted in improved dry matter intake, crude protein digestibility, and increased nitrogen excretion, highlighting their effectiveness as feed options.
View Article and Find Full Text PDF

The dual-specificity protein kinase MKK3 has been implicated in tumor cell proliferation and survival, yet its precise role in cancer remains inconclusive. A critical step in elucidating the kinase's involvement in disease biology is the identification of potent, cell-permeable kinase inhibitors. Presently, MKK3 lacks a dedicated tool compound for these purposes, along with validated methods for the facile screening, identification, and optimization of inhibitors.

View Article and Find Full Text PDF

The discovery of potent and selective inhibitors for understudied kinases can provide relevant pharmacological tools to illuminate their biological functions. DYRK1A and DYRK1B are protein kinases linked to chronic human diseases. Current DYRK1A/DYRK1B inhibitors also antagonize the function of related protein kinases, such as CDC2-like kinases (CLK1, CLK2, CLK4) and DYRK2.

View Article and Find Full Text PDF

Dual-specificity tyrosine-regulated kinase 1A (DYRK1A) regulates the proliferation and differentiation of neuronal progenitor cells during brain development. Consequently, DYRK1A has attracted interest as a target for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD) and Down's syndrome. Recently, the inhibition of DYRK1A has been investigated as a potential treatment for diabetes, while DYRK1A's role as a mediator in the cell cycle has garnered interest in oncologic indications.

View Article and Find Full Text PDF

The objective was to evaluate the water intake and ingestive behavior of sheep fed diets containing silages of cactus pear combined with tropical forages. Forty sheep without defined breed, intact, with initial average weight of 22.65 ± 1.

View Article and Find Full Text PDF

Calcium/Calmodulin-dependent Protein Kinase Kinase 2 (CAMKK2) acts as a signaling hub, receiving signals from various regulatory pathways and decoding them via phosphorylation of downstream protein kinases - such as AMPK (AMP-activated protein kinase) and CAMK types I and IV. CAMKK2 relevance is highlighted by its constitutive activity being implicated in several human pathologies. However, at present, there are no selective small-molecule inhibitors available for this protein kinase.

View Article and Find Full Text PDF
Article Synopsis
  • Next-generation antimalarials need to be able to cure malaria and block its transmission, highlighting the importance of discovering new druggable molecular pathways.
  • Researchers identified CLK3 as a promising drug target, using a selective inhibitor that affected multiple life stages of the malaria parasite and validated its role through chemogenetics.
  • Inhibiting CLK3 led to the down-regulation of over 400 key parasite genes, resulting in rapid killing of the parasite and prevention of gametocyte development, suggesting potential for both curing and preventing malaria transmission.
View Article and Find Full Text PDF

We describe SGC-GAK-1 (11), a potent, selective, and cell-active inhibitor of cyclin G-associated kinase (GAK), together with a structurally related negative control SGC-GAK-1N (14). 11 was highly selective in an in vitro kinome-wide screen, but cellular engagement assays defined RIPK2 as a collateral target. We identified 18 as a potent RIPK2 inhibitor lacking GAK activity.

View Article and Find Full Text PDF

β-Catenin-dependent WNT signal transduction governs development, tissue homeostasis, and a vast array of human diseases. Signal propagation through a WNT-Frizzled/LRP receptor complex requires proteins necessary for clathrin-mediated endocytosis (CME). Paradoxically, CME also negatively regulates WNT signaling through internalization and degradation of the receptor complex.

View Article and Find Full Text PDF

The calcium/calmodulin-dependent protein kinases (CAMKKs) are upstream activators of CAMK1 and CAMK4 signalling and have important functions in neural development, maintenance and signalling, as well as in other aspects of biology such as Ca signalling in the cardiovascular system. To support the development of specific inhibitors of CAMKKs we have determined the crystal structure of CAMKK1 with two ATP-competitive inhibitors. The structures reveal small but exploitable differences between CAMKK1 and CAMKK2, despite the high sequence identity, which could be used in the generation of specific inhibitors.

View Article and Find Full Text PDF

We demonstrate for the first time that 4-1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4-1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity through targeted displacement of bound water molecules in the active site. Since the TDZ analogues showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent starting points for development of highly selective kinase inhibitors.

View Article and Find Full Text PDF

4-Anilinoquinolines were identified as potent and narrow-spectrum inhibitors of the cyclin G associated kinase (GAK), an important regulator of viral and bacterial entry into host cells. Optimization of the 4-anilino group and the 6,7-quinoline substituents produced GAK inhibitors with nanomolar activity, over 50 000-fold selectivity relative to other members of the numb-associated kinase (NAK) subfamily, and a compound (6,7-dimethoxy-N-(3,4,5-trimethoxyphenyl)quinolin-4-amine; 49) with a narrow-spectrum kinome profile. These compounds may be useful tools to explore the therapeutic potential of GAK in prevention of a broad range of infectious and systemic diseases.

View Article and Find Full Text PDF

The human genome encodes two active Vaccinia-related protein kinases (VRK), VRK1 and VRK2. These proteins have been implicated in a number of cellular processes and linked to a variety of tumors. However, understanding the cellular role of VRKs and establishing their potential use as targets for therapeutic intervention has been limited by the lack of tool compounds that can specifically modulate the activity of these kinases in cells.

View Article and Find Full Text PDF

B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy.

View Article and Find Full Text PDF

Overexpression of the anti-apoptotic Bcl-2 family proteins occurs commonly in human cancers. Bfl-1 is highly expressed in some types of malignant cells, contributing significantly to tumor cell survival and chemoresistance. Therefore, it would be desirable to have chemical antagonists of Bfl-1.

View Article and Find Full Text PDF

UBC13 is a noncanonical ubiquitin conjugating enzyme (E2) that has been implicated in a variety of cellular signaling processes due to its ability to catalyze formation of lysine 63-linked polyubiquitin chains on various substrates. In particular, UBC13 is required for signaling by a variety of receptors important in immune regulation, making it a candidate target for inflammatory diseases. UBC13 is also critical for double-strand DNA repair and thus a potential radiosensitizer and chemosensitizer target for oncology.

View Article and Find Full Text PDF

Purpose: To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation.

Methods: Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees.

View Article and Find Full Text PDF

Nuclear receptor TR3/Nur77/NR4A1 binds several antiapoptotic Bcl-2-family proteins (Bcl-B, Bcl-2, Bfl-1) in a non-BH3-dependent manner. A 9-amino-acid peptide derived from full-length TR3 with polyarginine tail (TR3-r8) recapitulates TR3's binding specificity, displaying high affinity for Bcl-B. TR3-r8 peptide was used to screen for small molecule Bcl-B inhibitors.

View Article and Find Full Text PDF

Thiamin pyrophosphate is an essential coenzyme in all organisms that depend on fermentation, respiration or photosynthesis to produce ATP. It is synthesized through two independent biosynthetic routes: one for the synthesis of 2-methyl-4-amino-5-hydroxymethylpyrimidine pyrophosphate (pyrimidine moiety) and another for the synthesis of 4-methyl-5-(beta-hydroxyethyl) thiazole phosphate (thiazole moiety). Herein, we will describe the three-dimensional structure of THI1 protein from Arabidopsis thaliana determined by single wavelength anomalous diffraction to 1.

View Article and Find Full Text PDF