Publications by authors named "Paulo F Almeida"

Article Synopsis
  • Rapid advancements in nanotechnology are enabling the development of functional nanomaterials for biomedical applications, improving drug stability, reducing side effects, and enhancing therapeutic effectiveness.
  • Rising resistance to antifungal treatments has sparked interest in alternative therapies like Photodynamic Therapy (PDT), which effectively targets and controls pathogens without fostering microbial resistance.
  • This study tested the combination of PDT with the encapsulated photosensitizer 1,9-Dimethyl-Methylene Blue (DMMB) using rhamnolipids against Candida albicans, finding it significantly more effective than DMMB alone in reducing fungal growth, suggesting potential clinical applications.
View Article and Find Full Text PDF

Lipid bilayer membranes are often represented as a continuous nonpolar slab with a certain thickness bounded by two more polar interfaces. Phenomena such as peptide binding to the membrane surface, folding, insertion, translocation, and diffusion are typically interpreted on the basis of this view. In this Perspective, I argue that this membrane representation as a hydrophobic continuum solvent is not adequate to understand peptide-lipid interactions.

View Article and Find Full Text PDF

Orthodontic treatment involves the use of apparatuses that impairs oral hygiene making patients susceptible to periodontal diseases and caries. To prevent increased antimicrobial resistance A-PDT has shown itself a feasible option. The aim of this investigation was to assess the efficiency of A-PDT employing 1,9-Dimethyl-Methylene Blue zinc chloride double salt - DMMB as a photosensitizing agent combined with red LED irradiation (λ640 ± 5 ηm) against oral biofilm of patients undertaking orthodontic treatment.

View Article and Find Full Text PDF

Oil recovery is a challenge and microbial enhanced oil recovery is an option. We theorized that the use of produced water (PW) with photo-stimulation could influence both production and viscosity of Xanthan gum. This study aimed at the evaluation of the effect of photo-stimulation by λ630 ± 1 ηm LED light on the biosynthesis of Xanthan gum produced by Xanthomonas campestris IBSBF 2103 strain reusing PW of the oil industry.

View Article and Find Full Text PDF

Sulphate-reducing bacteria are commonly associated with biological causes of oil well souring. Biosulphetogenesis can directly affect oil quality and storage due to the accumulation of sulphides. In addition, these microorganisms can create bio-incrustation that can clog pipes.

View Article and Find Full Text PDF

The mechanism of the antimicrobial peptide daptomycin is reviewed and discussed. Daptomycin is a last-resort antibiotic in current use against drug-resistant bacterial infections. Many models have been proposed for its function, most based on the observation that it increases membrane permeability and causes leakage of contents, such as ions and small molecules from bacterial cells and lipid vesicles.

View Article and Find Full Text PDF

Oil is expected to continue to be one of the most important sources of energy in the world and world's energy matrix for the foreseeable future. However, high demand for energy and the decline of the production of oil fields makes oil recovery a challenge. Most techniques used for the recovery process are expensive, non-sustainable and technically difficult to implement.

View Article and Find Full Text PDF

Produced water (PW) is a by-product generated throughout oil exploration. Geological formation and geographical location of the reservoir influence its physical, chemical and biological characteristics. Xanthan gum (XG), an exopolysaccharide (EPS) produced by Xanthomonas campestris, has been widely used in enhanced oil recovery (EOR) technology because of its high viscosity, pseudoplastic behavior, stability in function of salinity, temperature and alkaline conditions.

View Article and Find Full Text PDF

The present work aimed to give an economical destiny to the produced water, a residue generated by the oil and gas industry by means of producing bioactives such as xanthan gum and ramnolipid. These compounds are often used in combination during enhanced oil recovery strategies. On the other hand, reports on co-culture of bacterial strains that are responsible for their production are rare.

View Article and Find Full Text PDF

Photodynamic inactivation is a promising method for the treatment of infectious diseases. Nanotechnology through gold nanoparticles, as a tool to improve the delivery of photosensitizer is an attractive approach to enhance photodynamic inactivation of bacteria. Moreover, gold nanoparticles enchance the absorption of light due to their plasmon resonance.

View Article and Find Full Text PDF

The Enterococcus faecalis is a microorganism that causes multiple forms of resistance to a wide range of drugs used clinically. aPDT is a technique in which a visible light activates photosensitizer (PS), resulting in generation of reactive oxygen species that kill bacteria unselectively via an oxidative burst. aPDT is an alternative to antibiotics with the advantage of not causing resistance.

View Article and Find Full Text PDF

Antimicrobial Photodynamic Therapy (aPDT) is an alternative to conventional treatments of local infections such as the use of antibiotics, which may lead to the development of resistance. aPDT besides requiring the use of a photosensitiser also needs a light source do be carried out. In the search for efficient and low-cost procedure the use of multispectral polarized light (λ400-2000 nm) emerges as a possibility for the execution of aPDT.

View Article and Find Full Text PDF

Background: Orthodontics involves diagnosis and treatment of dental and skeletal malocclusions. Orthodontic apparatus may repair these malocclusions but may also impair oral hygiene making patients prone to develop both periodontal diseases and caries. Antimicrobial agents may be used to prevent this.

View Article and Find Full Text PDF

The reuse of wastewater is important for reducing costs involved with algal lipid production. However, nutrient limitations, wastewater-borne microbes, and mixotrophic growth can significantly affect biomass yields and lipid/biomass ratios. This research compared the growth performances of both Chlorella vulgaris and Pseudokirchneriella subcapitata on domestic wastewater effluent.

View Article and Find Full Text PDF

The determination and the meaning of interactions in lipid bilayers are discussed and interpreted through the Ising model. Originally developed to understand phase transitions in ferromagnetic systems, the Ising model applies equally well to lipid bilayers. In the case of a membrane, the essence of the Ising model is that each lipid is represented by a site on a lattice and that the interaction of each site with its nearest neighbors is represented by an energy parameter ω.

View Article and Find Full Text PDF

Light biotechnology is a promising tool for enhancing recalcitrant compounds biodegradation. Xenobiotics can cause a significant impact on the quality of the results achieved by sewage treatment systems due to their recalcitrance and toxicity. The optimization of bioremediation and industrial processes, aiming to increase efficiency and income is of great value.

View Article and Find Full Text PDF

The exchangeable unsaturated phospholipids c-Phos and c-Phos, which bear one and three permanent kinks, respectively, in their acyl chains, are mimics of the biologically important, low-melting phosphatidylcholines (PCs) having one and three cis double bonds in their sn-2 chains (i.e., 16:0,18:1 PC and 16:0,18:3 PC, respectively).

View Article and Find Full Text PDF

The excess heat capacity (Δ C ) of mixtures of dipalmitoylphosphatidylcholine (DPPC) and cholesterol (Chol) is examined in detail in large unilamellar vesicles (LUVs), both experimentally, using differential scanning calorimetry (DSC), and theoretically, using a three-state Ising model. The model postulates that DPPC can access three conformational states: gel, liquid-disordered (L), and liquid-ordered (L). The L state, however, is only available if coupled with interaction with an adjacent Chol.

View Article and Find Full Text PDF

Cellulose has a highly diversified architecture and its enzymatic complexes are studied for achieving an efficient conversion and a high level of efficiency in the deconstruction of cellulolytic biomass into sugars. The aim of this investigation was to evaluate the effect of Laser or LED light in the cellulolytic activity (CMCase) and on the proliferation of the thermophilic microbial consortium used on the degradation process of a lignocellulosic biomass of green coconut shell. The irradiation protocol consisted of six Laser irradiations (λ660 ηm, 40 mW, 270 s, 13 J/cm) or LED (λ632 ± 2 ηm, 145 mW, 44 s, 13 J/cm) with 12- h time intervals in nutrient deprivation conditions.

View Article and Find Full Text PDF

The aim of this study was to evaluate the lethal potential of macrophages infected with Staphylococcus aureus after PACT (Photochemical Antimicrobial Chemotherapy) using phenothiazine derivatives (a solution containing 1:1 methylene blue and O toluidine blue) and laser (660 nm, 40 mW, 60 s, 12 J/cm) or LED (632 ± 2 nm, 145 mW, 40 s, 12 J/cm). Six experimental groups were evaluated: Control Group (untreated); Photosensitizer group (phenothiazines - 12.5 μg/mL); Laser Group; LED Group; Laser PACT Group; and LED PACT Group.

View Article and Find Full Text PDF

We have used docking (GLIDE), pharmacophore modeling (Discovery Studio), long trajectory molecular dynamics (Discovery Studio) and ADMET/Tox (QikProp and DEREK) to investigate PAD4 in order to determine potential novel inhibitors and hits. We have carried out virtual screening in the ZINC natural compounds database. Pharmacokinetics and Toxicity of the best hits were assessed using databases implemented in softwares that create models based on chemical structures taking into account consideration about the toxicophoric groups.

View Article and Find Full Text PDF

Surfactants and co-surfactants play an important role in enhanced oil recovery for they improve petroleum solubility and reduce interfacial tensions between oil, water and the rock formation. Ethanol is receiving renewed attention as potential co-surfactant because of the negative results obtained with the use of salts and alkaline substances. Sulphate-reducing bacteria (SRB) can use surfactants and co-surfactants as carbon sources and, consequently, this can increase the biological accumulation of sulphide (souring).

View Article and Find Full Text PDF

Glycerol is a main co-product of biodiesel production. Crude glycerol may serve as a cheap and attractive substrate in biotechnological applications, e.g.

View Article and Find Full Text PDF

Daptomycin is an acidic, 13-amino acid, cyclic polypeptide that contains a number of nonproteinogenic residues and is modified at its N-terminus with a decanoyl chain. It has been in clinical use since 2003 against selected drug-resistant Staphylococcus aureus and Enterococcus spp infections. In vitro, daptomycin is active against Gram-positive pathogens at low concentrations but its antibiotic activity depends critically on the presence of calcium ions.

View Article and Find Full Text PDF