In the central nervous system (CNS), a number of different pathological processes such as necrosis, Parkinson's and Alzheimer's diseases are related to disturbance in calcium homeostasis associated with oxidative stress. Here we compare the susceptibility of rat brain plasma membrane Ca(2+)-ATPase (PMCA) and sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) isoforms to in vitro oxidative stress, and investigate a putative role of trifluoperazine (TFP), an antipsychotic drug that is also a powerful inhibitor of Ca(2+)-transporter proteins, in protecting these enzymes. It is shown that, in rat brain, PMCA is very sensitive to the damage induced by preincubation with Fe(2+)-ascorbate, or Fe(2+)-ascorbate plus H2O2, while SERCA is resistant.
View Article and Find Full Text PDF3-O-methylfluorescein phosphate hydrolysis, catalyzed by purified erythrocyte Ca2+-ATPase in the absence of Ca2+, was slow in the basal state, activated by phosphatidylserine and controlled proteolysis, but not by calmodulin. p-Nitrophenyl phosphate competitively inhibits hydrolysis in the absence of Ca2+, while ATP inhibits it with a complex kinetics showing a high and a low affinity site for ATP. Labeling with fluorescein isothiocyanate impairs the high affinity binding of ATP, but does not appreciably modify the binding of any of the pseudosubstrates.
View Article and Find Full Text PDF