Publications by authors named "Paulo C O Trivelin"

Foliar N-fertilization (FNf) has emerged as a promising approach to synchronize plant nitrogen (N) demands and application timing, reducing the N losses to the environment associated with traditional soil-based fertilization methods. However, limited information exists regarding the effectiveness of FNf in sugarcane. This study aimed to optimize FNf in sugarcane by evaluating N-fertilizer recovery by the plant (NRP) and assessing potential toxicity effects.

View Article and Find Full Text PDF
Article Synopsis
  • Humic substances (HS) and humic acids (HA) can improve nutrient uptake and growth in plants, particularly when combined with urea for foliar application, enhancing nitrogen use efficiency (NUE).
  • A study conducted in greenhouse settings in the USA and Brazil explored the effects of different foliar applications (urea, urea+HS, and urea+HA) on sugarcane across various cultivars and conditions.
  • Results indicated that the combination of urea and HS led to the highest NUE, with notable improvements in key physiological traits like photosynthesis and starch storage, suggesting that tailored foliar application methods could optimize nutrient efficiency in sugarcane cultivation.
View Article and Find Full Text PDF

Best fertilizer management practices such as adopting the right N sidedress timing can reduce N losses by volatilization, thus, raising N-fertilizer recovery and grain yield. To evaluate ammonia (N-NH3 ) losses, N-fertilizer recovery and grain yield as a function of urea sidedress timing in corn, a field study was conducted during the 2011-2012 and 2012-2013 growing seasons, adopting a complete randomized block design with four replications. Treatments consisted of urea sidedress timing (140 kg N ha-1) at V4, V6, V8, V10, and V12 growth stages, plus a control without sidedress N.

View Article and Find Full Text PDF

Early fertilizer nitrogen (N) application on cover crops or their residues during the off-season is a practice adopted in Brazil subtropical conditions under no-tillage corn (Zea mays L.) systems. However, the effect of early N application on yield, plant N content, and N recovery efficiency (NRE) for corn is not yet well documented.

View Article and Find Full Text PDF

Corn grain yield, nitrogen (N) fertilizer efficiency and distribution to corn alone and three forms of corn and palisadegrass (Urochloa spp.) intercropping implantation was investigated. A field experiment with 15N labeling fertilizer was performed in randomized block design.

View Article and Find Full Text PDF

Unraveling nutrient imbalances in contemporary agriculture is a research priority to improve whenever possible yield and nutrient use efficiency in sugarcane (Saccharum spp.) systems while minimizing the costs of cultivation (e.g.

View Article and Find Full Text PDF

Potassium (K) is an important limiting factor of tree growth, but little is known of the effects of K supply on the long-distance transport of photosynthetic carbon (C) in the phloem and of the interaction between K fertilization and drought. We pulse-labelled 2-year-old Eucalyptus grandis L. trees grown in a field trial combining K fertilization (+K and -K) and throughfall exclusion (+W and -W), and we estimated the velocity of C transfer by comparing time lags between the uptake of (13)CO2 and its recovery in trunk CO2 efflux recorded at different heights.

View Article and Find Full Text PDF

The use of the 15N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of 15N labeled fertilizer experiments, using as an example a coffee crop fertilized with 15N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice.

View Article and Find Full Text PDF

Although bromeliads are believed to obtain nutrients from debris deposited by animals in their rosettes, there is little evidence to support this assumption. Using stable isotope methods, we found that the Neotropical jumping spider Psecas chapoda (Salticidae), which lives strictly associated with the terrestrial bromeliad Bromelia balansae, contributed 18% of the total nitrogen of its host plant in a greenhouse experiment. In a one-year field experiment, plants with spiders produced leaves 15% longer than plants from which the spiders were excluded.

View Article and Find Full Text PDF