On-farm methane (CH) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH inventories in LAC countries.
View Article and Find Full Text PDFThe intensity and frequency of grazing affect the defoliating strategy of ruminants, their daily nutrient intake, thus nutrition and physiological status. Italian ryegrass ( Lam.) pastures were grazed by sheep either under a low-intensity/high-frequency grazing strategy (Rotatinuous stocking; RN) with nominal pre- and post-grazing sward heights of 18 and 11 cm, respectively, or under a high-intensity/low-frequency strategy (traditional rotational stocking; RT) with nominal pre- and post-grazing sward heights of 25 and 5 cm, respectively.
View Article and Find Full Text PDFSci Total Environ
October 2020
The inclusion of grazed pasture in dairy feeding systems based on a total mixed ration (TMR) reduces feed costs, benefits herd health, and reduces environmental impact. The present study aimed to evaluate the effect of ryegrass pasture combined with a partial TMR on enteric methane emissions, dry matter intake (DMI), and performance of dairy cows from mid to late lactation. The experimental treatments included 100% TMR (control), partial TMR + 6h of continuous grazing (0900-1500 h), and partial TMR + 6h of grazing that was divided into 2 periods of 3h each that took place after milking (0900-1200 h; 1530-1830 h).
View Article and Find Full Text PDFInvasion by exotic grasses is a severe threat to the integrity of grassland ecosystems all over the world. Because grasslands are typically grazed by livestock and wildlife, the invasion is a community process modulated by herbivory. We hypothesized that the invasion of native South American grasslands by Eragrostis plana Nees, an exotic tussock-forming grass from Africa, could be deterred by grazing if grazers switched dietary preferences and included the invasive grass as a large proportion of their diets.
View Article and Find Full Text PDF