Supersonic shear image (SSI) ultrasound elastography provides a quantitative assessment of tissue stiffness using the velocity of shear waves. SSI's great potential has allowed researchers in fields like biomechanics and muscle physiology to study the function of complex muscle groups in different conditions. The aim of this study is to use SSI to investigate changes in the stiffness of the vastus lateralis (VL) muscle as a consequence of passive elongation, isometric contraction, and repeated muscle activity.
View Article and Find Full Text PDFChildren with Down's syndrome (DS) might exhibit disrupted brain functional connectivity in the motor and prefrontal cortex. To inspect the alterations in brain activation and functional connectivity for children with DS, the functional near-infrared spectroscopy (fNIRS) method was applied to examine the brain activation difference in the motor and prefrontal cortex between the DS and typically developing (TD) groups during a fine motor task. In addition, small-world analysis based on graph theory was also carried out to characterize the topological organization of functional brain networks.
View Article and Find Full Text PDFIn peripheral nerves MSCs can modulate Wallerian degeneration and the overall regenerative response by acting through paracrine mechanisms directly on regenerating axons or upon the nerve-supporting Schwann cells. In the present study, the effect of human MSCs from Wharton's jelly (HMSCs), differentiated into neuroglial-like cells associated to poly (DL-lactide-ε-caprolactone) membrane, on nerve regeneration, was evaluated in the neurotmesis injury rat sciatic nerve model. Results in vitro showed successful differentiation of HMSCs into neuroglial-like cells, characterized by expression of specific neuroglial markers confirmed by immunocytochemistry and by RT-PCR and qPCR targeting specific genes expressed.
View Article and Find Full Text PDFThe aim of the study was to compare the maximal physiological responses during three protocols: maximal test on land cycle ergometer, maximal test on water cycling in an indoor pool at 27 °C (WC27) and at 31 °C (WC31). Moreover, the submaximal physiological responses were compared according cycling cadences and water temperatures during the water protocols. Ten young men were included and performed the protocols in separate days.
View Article and Find Full Text PDFDespite the great regenerative ability of the peripheral nervous system (PNS), traumatic peripheral nerve damage often causes severe chronic disability. Rehabilitation following PNS trauma usually employs therapeutic exercise in an attempt to reanimate the target organs and stimulate functional recovery. Over the past years, important neurobiological determinants of PNS regeneration and successful end-organ reinnervation were unveiled.
View Article and Find Full Text PDFAppl Physiol Nutr Metab
January 2013
Research on the effect of caffeine on energy expenditure (EE), physical activity (PA), and total sleep time (TST) during free-living conditions using objective measures is scarce. We aimed to determine the impact of a moderate dose of caffeine on TST, resting EE (REE), physical activity EE (PAEE), total EE (TEE), and daily time spent in sedentary, light, moderate, and vigorous intensity activities in a 4-day period and the acute effects on heart rate (HR) and EE in physically active males. Using a double-blind crossover trial (ClinicalTrials.
View Article and Find Full Text PDFWalking analysis in the rat is increasingly used to assess functional recovery after peripheral nerve injury. Here we assess the sensitivity and specificity of hindlimb joint kinematics measures during the rat gait early after sciatic nerve crush injury (DEN), after twelve weeks of recovery (REINN) and in sham-operated controls (Sham) using discriminant analysis. The analysis addressed gait spatiotemporal variables and hip, knee and ankle angle and angular velocity measures during the entire walking cycle.
View Article and Find Full Text PDFNeurotmesis must be surgically treated by direct end-to-end suture of the two nerve stumps or by a nerve graft harvested from elsewhere in the body in case of tissue loss. To avoid secondary damage due to harvesting of the nerve graft, a tube-guide can be used to bridge the nerve gap. Previously, our group developed and tested hybrid chitosan membranes for peripheral nerve tubulization and showed that freeze-dried chitosan type III membranes were particularly effective for improving peripheral nerve functional recovery after axonotmesis.
View Article and Find Full Text PDFPeripheral nerves possess the capacity of self-regeneration after traumatic injury but the extent of regeneration is often poor and may benefit from exogenous factors that enhance growth. The use of cellular systems is a rational approach for delivering neurotrophic factors at the nerve lesion site, and in the present study we investigated the effects of enwrapping the site of end-to-end rat sciatic nerve repair with an equine type III collagen membrane enriched or not with N1E-115 pre-differentiated neural cells. After neurotmesis, the sciatic nerve was repaired by end-to-end suture (End-to-End group), end-to-end suture enwrapped with an equine collagen type III membrane (End-to-EndMemb group); and end-to-end suture enwrapped with an equine collagen type III membrane previously covered with neural cells pre-differentiated in vitro from N1E-115 cells (End-to-EndMembCell group).
View Article and Find Full Text PDFPoly(lactic-co-glycolic acid) (PLGA) nerve tube guides, made of a novel proportion (90:10) of the two polymers, poly(L-lactide): poly(glycolide) and covered with a neural cell line differentiated in vitro, were tested in vivo for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve. Before in vivo testing, the PLGA 90:10 tubes were tested in vitro for water uptake and mass loss and compared with collagen sheets. The water uptake of the PLGA tubes was lower, and the mass loss was more rapid and higher than those of the collagen sheets when immersed in phosphate-buffered saline (PBS) solution.
View Article and Find Full Text PDFThe purpose of this study was to test in vivo two different nerve guides for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve: 1) one made of PLGA in a novel proportion (90:10) of the two polymers poly(L-lactide):poly(glycolide); 2) another made of (DL-lactide-epsilon-caprolactone) copolyester (Neurolac) tube, by comparing its healing efficacy with that of the more traditional methods of end-to-end nerve suture and autologous graft. Motor and sensory functional recovery were assessed throughout the healing period of 20 weeks, and the repaired nerves were processed for morphological and histomorphometrical analysis. Both motor and sensory functions improved significantly in all experimental nerve repaired groups.
View Article and Find Full Text PDFThe purpose of this study was to test in vivo two different nerve guides, one of PLGA made of a novel proportion (90:10) of the two polymers, Poly(L-lactide):Poly(glycolide), with (DL-lactide-epsilon-caprolactone) copolyester (Neurolac) tube, in promoting nerve regeneration across a 10 mm-gap of the rat sciatic nerve. Finally, end-to-end coaptation was performed. Motor and sensory functional recovery was assessed throughout the healing period of 20 weeks and the repaired nerves were processed for morphological analysis.
View Article and Find Full Text PDF