Environmentally-mediated protozoan diseases like cryptosporidiosis and giardiasis are likely to be highly impacted by extreme weather, as climate-related conditions like temperature and precipitation have been linked to their survival, distribution, and overall transmission success. Our aim was to investigate the relationship between extreme temperature and precipitation and cryptosporidiosis and giardiasis infection using monthly weather data and case reports from Colorado counties over a twenty-one year period. Data on reportable diseases and weather among Colorado counties were collected using the Colorado Electronic Disease Reporting System (CEDRS) and the Daily Surface Weather and Climatological Summaries (Daymet) Version 3 dataset, respectively.
View Article and Find Full Text PDFHuman activities are rapidly changing ecosystems around the world. These changes have widespread implications for the preservation of biodiversity, agricultural productivity, prevalence of zoonotic diseases, and sociopolitical conflict. To understand and improve the predictive capacity for these and other biological phenomena, some scientists are now relying on observatory networks, which are often composed of systems of sensors, teams of field researchers, and databases of abiotic and biotic measurements across multiple temporal and spatial scales.
View Article and Find Full Text PDFBackground: Although the presence of intermediate snails is a necessary condition for local schistosomiasis transmission to occur, using them as surveillance targets in areas approaching elimination is challenging because the patchy and dynamic quality of snail host habitats makes collecting and testing snails labor-intensive. Meanwhile, geospatial analyses that rely on remotely sensed data are becoming popular tools for identifying environmental conditions that contribute to pathogen emergence and persistence.
Methods: In this study, we assessed whether open-source environmental data can be used to predict the presence of human Schistosoma japonicum infections among households with a similar or improved degree of accuracy compared to prediction models developed using data from comprehensive snail surveys.
Vector Borne Zoonotic Dis
June 2023
Cases of tick-borne diseases have been steadily increasing in the USA, owing in part to tick range expansion, land cover and associated host population changes, and habitat fragmentation. However, the relative importance of these and other potential drivers remain poorly understood within this complex disease system. Ticks are ectotherms with multi-host lifecycles, which makes them sensitive to changes in the physical environment and the ecological community.
View Article and Find Full Text PDFAlthough the presence of intermediate snails is a necessary condition for local schistosomiasis transmission to occur, using them as surveillance targets in areas approaching elimination is challenging because the patchy and dynamic quality of snail host habitats makes collecting and testing snails labor-intensive. Meanwhile, geospatial analyses that rely on remotely sensed data are becoming popular tools for identifying environmental conditions that contribute to pathogen emergence and persistence. In this study, we assessed whether open-source environmental data can be used to predict the presence of human infections among households with a similar or improved degree of accuracy compared to prediction models developed using data from comprehensive snail surveys.
View Article and Find Full Text PDFIn the rapidly urbanizing region of West Africa, mosquitoes pose an emerging threat of infectious disease that is compounded by limited vector surveillance. Citizen science has been proposed as a way to fill surveillance gaps by training local residents to collect and share information on disease vectors. Understanding the distribution of arbovirus vectors in West Africa can inform researchers and public health officials on where to conduct disease surveillance and focus public health interventions.
View Article and Find Full Text PDFVector-borne diseases are responsible for more than 17% of human cases of infectious diseases. In most situations, effective control of debilitating and deadly vector-bone diseases (VBDs), such as malaria, dengue, chikungunya, yellow fever, Zika and Chagas requires up-to-date, robust and comprehensive information on the presence, diversity, ecology, bionomics and geographic spread of the organisms that carry and transmit the infectious agents. Huge gaps exist in the information related to these vectors, creating an essential need for campaigns to mobilise and share data.
View Article and Find Full Text PDFThe global community has adopted ambitious goals to eliminate schistosomiasis as a public health problem, and new tools are needed to achieve them. Mass drug administration programs, for example, have reduced the burden of schistosomiasis, but the identification of hotspots of persistent and reemergent transmission threaten progress toward elimination and underscore the need to couple treatment with interventions that reduce transmission. Recent advances in DNA sequencing technologies make whole-genome sequencing a valuable and increasingly feasible option for population-based studies of complex parasites such as schistosomes.
View Article and Find Full Text PDFIn China, bovines are believed to be the most common animal source of human schistosomiasis infections, though little is known about what factors promote bovine infections. The current body of literature features inconsistent, and sometimes contradictory results, and to date, few studies have looked beyond physical characteristics to identify the broader environmental conditions that predict bovine schistosomiasis. Because schistosomiasis is a sanitation-related, water-borne disease transmitted by many animals, we hypothesised that several environmental factors - such as the lack of improved sanitation systems, or participation in agricultural production that is water-intensive - could promote schistosomiasis infection in bovines.
View Article and Find Full Text PDFArboviruses transmitted by Aedes mosquitoes are a growing global concern; however, there remain large gaps in surveillance of both arboviruses and their vectors in West Africa. We reviewed over 50 years of data including outbreak reports, peer-reviewed literature, and prior data compilations describing Zika, dengue, and chikungunya, and their vectors in West Africa. Large outbreaks of dengue, Zika, and chikungunya have recently occurred in the region with over 27,000 cases of Aedes-borne disease documented since 2007.
View Article and Find Full Text PDFThe rapid pace of environmental change is driving multi-faceted shifts in abiotic factors that influence parasite transmission. However, cumulative effects of these factors on wildlife diseases remain poorly understood. Here we used an information-theoretic approach to compare the relative influence of abiotic factors (temperature, diurnal temperature range, nutrients and pond-drying), on infection of snail and amphibian hosts by two trematode parasites (Ribeiroia ondatrae and Echinostoma spp.
View Article and Find Full Text PDFThe effect of global climate change on infectious disease remains hotly debated because multiple extrinsic and intrinsic drivers interact to influence transmission dynamics in nonlinear ways. The dominant drivers of widespread pathogens, like West Nile virus, can be challenging to identify due to regional variability in vector and host ecology, with past studies producing disparate findings. Here, we used analyses at national and state scales to examine a suite of climatic and intrinsic drivers of continental-scale West Nile virus epidemics, including an empirically derived mechanistic relationship between temperature and transmission potential that accounts for spatial variability in vectors.
View Article and Find Full Text PDFGlobal climate change is expected to alter patterns of temperature variability, which could influence species interactions including parasitism. Species interactions can be difficult to predict in variable-temperature environments because of thermal acclimation responses, i.e.
View Article and Find Full Text PDFBackground: Nephrotoxicity due to drugs especially beta lactams and cephalosporins has been well recognised. Cefepime is a fourth-generation cephalosporin that is widely prescribed with few severe adverse reactions reported. Although cefepime induced neurotoxicity has frequently been reported, there is yet no reported case of acute interstitial nephritis caused by this drug.
View Article and Find Full Text PDFPathogen transmission responds differently to host richness and abundance, two unique components of host diversity. However, the heated debate around whether biodiversity generally increases or decreases disease has not considered the relationships between host richness and abundance that may exist in natural systems. Here we use a multi-species model to study how the scaling of total host community abundance with species richness mediates diversity-disease relationships.
View Article and Find Full Text PDFMulti-species experiments are critical for identifying the mechanisms through which climate change influences population dynamics and community interactions within ecological systems, including infectious diseases. Using a host-parasite system involving freshwater snails, amphibians and trematode parasites, we conducted a year-long, outdoor experiment to evaluate how warming affected net parasite production, the timing of infection and the resultant pathology. Warming of 3 °C caused snail intermediate hosts to release parasites 9 months earlier and increased infected snail mortality by fourfold, leading to decreased overlap between amphibians and parasites.
View Article and Find Full Text PDFBiodiversity loss sometimes increases disease risk or parasite transmission in humans, wildlife and plants. Some have suggested that this pattern can emerge when host species that persist throughout community disassembly show high host competence - the ability to acquire and transmit infections. Here, we briefly assess the current empirical evidence for covariance between host competence and extirpation risk, and evaluate the consequences for disease dynamics in host communities undergoing disassembly.
View Article and Find Full Text PDFSince the identification and imprisonment of "Typhoid Mary," a woman who infected at least 47 people with typhoid in the early 1900s, epidemiologists have recognized that 'superspreading' hosts play a key role in disease epidemics. Such variability in transmission also exists among species within a community (amplification hosts) and among habitat patches across a landscape (disease 'hotspots'), underscoring the need for an integrative framework for studying transmission heterogeneity. Here, we synthesize literature on human, plant, and animal diseases to evaluate the relative contributions of host, pathogen, and environmental factors in driving transmission heterogeneity across hosts and space.
View Article and Find Full Text PDFControversy persists regarding the contributions of climate change to biodiversity losses, through its effects on the spread and emergence of infectious diseases. One of the reasons for this controversy is that there are few mechanistic studies that explore the links among climate change, infectious disease, and declines of host populations. Given that host-parasite interactions are generally mediated by physiological responses, we submit that physiological models could facilitate the prediction of how host-parasite interactions will respond to climate change, and might offer theoretical and terminological cohesion that has been lacking in the climate change-disease literature.
View Article and Find Full Text PDFWith growing interest in the effects of biodiversity on disease, there is a critical need for studies that empirically identify the mechanisms underlying the diversity-disease relationship. Here, we combined wetland surveys of host community structure with mechanistic experiments involving a multi-host parasite to evaluate competing explanations for the dilution effect. Sampling of 320 wetlands in California indicated that snail host communities were strongly nested, with competent hosts for the trematode Ribeiroia ondatrae predominating in low-richness assemblages and unsuitable hosts increasingly present in more diverse communities.
View Article and Find Full Text PDFThe notion that climate change will generally increase human and wildlife diseases has garnered considerable public attention, but remains controversial and seems inconsistent with the expectation that climate change will also cause parasite extinctions. In this review, we highlight the frontiers in climate change-infectious disease research by reviewing knowledge gaps that make this controversy difficult to resolve. We suggest that forecasts of climate-change impacts on disease can be improved by more interdisciplinary collaborations, better linking of data and models, addressing confounding variables and context dependencies, and applying metabolic theory to host-parasite systems with consideration of community-level interactions and functional traits.
View Article and Find Full Text PDF