The monosaccharide anhydrides levoglucosan, mannosan, and galactosan are known as 'fire sugars' as they are powerful proxies used to trace fire events. Despite their increasing use, their application is not completely understood, especially in the context of tracing past fire events using sediment samples. There are many uncertainties about fire sugar formation, partitioning, transport, complexation, and stability along all stages of the source-to-sink pathway.
View Article and Find Full Text PDFBackground: Nitrite (NO) and nitrate (NO) can be produced in the distribution systems of chloraminated drinking water due to the nitrification of ammonia. The most applied inorganic chloramine for this purpose, namely monochloramine (NHCl), is also released into aquatic environments from water treatment plants' effluent and within industrial waste streams. Within the treatment process, the continuous monitoring of disinfectant levels is necessary to limit the harmful disinfectant by-product (DBP) formation.
View Article and Find Full Text PDFBackground: The on-site and simultaneous determination of anionic nitrite (NO) and nitrate (NO), and cationic ammonium (NH), in industrial and natural waters, presents a significant analytical challenge. Toward this end, herein a 3D-printed micro-reactor with an integrated heater chip was designed and optimised for the post-column colorimetric detection of NH using a modified Berthelot reaction. The system was integrated within a portable and field deployable ion chromatograph (Aquamonitrix) designed to separate and detect NO and NO, but here enabled with dual LED-based absorbance detectors, with the aim to provide the first system capable of simultaneous determination of both anions and NH in industrial and natural waters.
View Article and Find Full Text PDFReal-time monitoring of nitrite and nitrate is crucial for maintaining soil health and promoting plant growth. In this study, a portable ion-chromatograph (IC, Aquamonitrix) analyser, coupled with a field-applicable ultrasonic-assisted extraction method, was utilised for in-field determination of nitrate and nitrite in soils. This is the first application of this type of analyser to soil nutrients.
View Article and Find Full Text PDFBoron compounds play a crucial role in various industries, and accurate quantification of boron is essential for quality control and environmental monitoring. This study presents a simple, rapid, and reliable method for determining boron in aqueous solutions using suppressed ion chromatography coupled to electrospray ionisation-triple quadrupole mass spectrometry (IC-ESI-QqQ-MS). Boric acid (B(OH)) was retained as the tetrahydroxyborate ion (B(OH)) on a CarboPac PA300-4 μm anion-exchange column using isocratic elution with 40 mM KOH.
View Article and Find Full Text PDFA novel approach for multi-wavelength ultraviolet (UV) absorbance detection has been introduced employing a single board computer (SBC) with a field programmable gate array (FPGA), Red Pitaya SBC, to generate separated micro pulses for three deep-ultraviolet light-emitting diodes (DUV-LEDs), λ = 235, 250, and 280 nm, along with data acquisition and processing via a custom-made program. The pulse set generation and data acquisition were synchronized using the SBC. The outputs of the three pulsing DUV-LEDs were combined and transmitted to the flow cell via a solarisation resistant trifurcated optical fiber (OF).
View Article and Find Full Text PDFLiquid chromatography is a prominent analytical technique in separation science and chemical analysis, applied across numerous fields of research and within industrial applications. Over the past few decades, there has been a growing interest in the miniaturization of this technique, which has been particularly enabled through new miniature and portable detection technologies for in-field, at-site, and point-of-need (collectively 'out-of-lab') analyses. Accordingly, significant advances have been made in recent years in the development of miniaturized liquid chromatography with photometric, electrochemical, and mass spectrometric detection, enabling the development of field-deployable and portable instruments for various applications.
View Article and Find Full Text PDFThe ability to trace current and past biomass burning events is important for understanding the links between human activity, fire frequency, and climate. One method of tracing biomass burning is to measure the concentrations of certain monosaccharides anhydrides (MAs), specifically levoglucosan (LEV) and its isomers, mannosan (MAN) and galactosan (GAL), which are products of cellulose and hemicellulose pyrolysis. This work presents a simple extraction method allowing for the rapid, sensitive, and selective determination of MAs in sediments.
View Article and Find Full Text PDFA novel, low-cost, and disposable thread-based electrofluidic analytical method employing isotachophoresis (ITP) was developed for demonstrating surface DNA hybridization. This approach was based on graphene oxide (GO) surface-functionalized zones on nylon threads as a binding platform to trap a fluorescently labeled isotachophoretically focused single-stranded DNA (ssDNA) band, resulting in quenching of the fluorescence, which signaled quantitative trapping. In the event of an isotachophoretically focused complementary DNA (cDNA) band passing over the GO-trapped ssDNA zone, surface hybridization of the ssDNA and cDNA to form double-stranded DNA (dsDNA) band occurred, which is released from the GO-coated zones, resulting in restoration of the fluorescent signal as it exits the GO band and migrates further along the thread.
View Article and Find Full Text PDFStudy Objective: The SARS-CoV-2 (COVID-19) pandemic significantly impacted emergency department volume and acuity. The Delta and Omicron variants contributed to additional surges. We describe the impact that the initial pandemic phase had on frequency and severity of typically non-life-threatening emergencies using upper extremity injuries as a model for other potentially emergent presentation as compared to pre-pandemic times.
View Article and Find Full Text PDFA new method and platform has been developed for direct transfer, electrophoretic separation, and pre-concentration of swabbed samples using the principles of thread-based electrofluidics. A direct electrokinetic injection has been observed for a variety of analytes ranging from small molecules to proteins. The effect of physicochemical interactions of the analyte with the swab and the thread on the transfer efficiency has been studied by exploring different swab and thread combinations.
View Article and Find Full Text PDFElectrophoresis on textile fiber substrates provides a unique surface-accessible platform for the movement, separation and concentration of charged analytes. The method employs the inherently inbuilt capillary channels existing within textile structures, which can support electroosmotic and electrophoretic transport processes upon applying an electric field. Unlike confined microchannels in classical chip-based electrofluidic devices, the capillaries formed by the roughly oriented fibers within textile substrates can impact the reproducibility of the separation process.
View Article and Find Full Text PDFDue to their size, conventional high performance liquid chromatographs (HPLCs) are difficult to place close to a reaction vessel within a pharmaceutical manufacturing or development site. Typically, long transfer lines are required to move sample from the reactor to the HPLC for analysis and high solvent usage is required. However, herein a compact and modular separation system has been developed to enable co-location of an HPLC with a small-scale reactor for reaction monitoring in the synthesis of active pharmaceutical ingredients.
View Article and Find Full Text PDFAdsorption and chromatographic properties of oxidized and hydrogenated 'high pressure and high temperature' synthesised diamond (HPHT) are studied using high-performance liquid chromatography. The retention factors of organic cation (benzyltributylammonium chloride), weak base (aniline), weak acid (benzoic acid), strong acid (benzenesulfonic acid), hydrophobic toluene, and hydrophilic uracil are obtained at varied pH, organic solvent content, and ionic strength of mobile phase. Both adsorbents exhibited moderate polarity with a mixed-mode retention mechanism with a combination of electrostatic, hydrophobic and hydrophilic interactions.
View Article and Find Full Text PDFThis research describes a nanomaterial-assisted thread-based isotachophoresis (TB-ITP) setup for the clean-up, preconcentration, and trapping of alkaloids (coptisine, berberine, and palmatine) in biological fluids, followed by their on-thread desorption electrospray ionization mass spectrometry (DESI-MS) determination. The reusable TB-ITP setup and a DESI compatible thread holder were 3D printed. A single nylon thread was employed as the ITP substrate for solute isolation and enrichment, and a short piece of graphene oxide (GO) functionalized nylon thread was tied around the main 'separation' thread as the 'trap' for the trapping of ITP focused alkaloids.
View Article and Find Full Text PDFGeneration of specific xylooligosaccharides (XOS) is attractive to the pharmaceutical and food industries due to the importance of their structure upon their application. This study used chemometrics to develop a comprehensive computational modelling set to predict the parameters maximising the generation of the desired XOS during enzymatic hydrolysis. The evaluated parameters included pH, temperature, substrate concentration, enzyme dosage and reaction time.
View Article and Find Full Text PDFHigh-performance anion-exchange chromatography (HPAEC) coupled with triple quadrupole mass spectrometry (HPAEC-QqQ-MS) was applied to the determination of xylooligosaccharides (XOS) derived from enzymatically hydrolysed commercial xylan from beechwood and the analytical performance and advantages of the method explored. Separation, eluent suppression, electrospray ionisation, and detection options to enhance XOS sensitivity and selectivity were evaluated, delivering a new simple, fast, selective, and sensitive solution for the characterisation of these complex compounds. The method was fully validated in terms of its analytical performance for those XOS for which standards were available, i.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
February 2022
Essential oils have been used for centuries for their preservative properties. An example is ylang-ylang Cananga odorata [Lam.] Hook.
View Article and Find Full Text PDFA thread-based isotachophoresis method coupled with desorption electrospray ionization mass spectrometry (TB-ITP-DESI-MS) was developed and applied for clean-up, preconcentration, and determination of alkaloids in biological fluids. This simple approach enables the focusing and rapid analysis of analytes of interest in complex matrices that are otherwise challenging using direct ambient mass spectrometry. The TB-ITP platform components were rapidly and reproducibly fabricated at low-cost using 3D printing.
View Article and Find Full Text PDFPoint of care testing using micro-total-analysis systems (μTAS) is critical to emergent healthcare devices with rapid and robust responses. However, two major barriers to the success of this approach are the prohibitive cost of microchip fabrication and poor sensitivity due to small sample volumes in a microfluidic format. Here, we aimed to replace the complex microchip format with a low-cost textile substrate with inherently built microchannels using the fibers' spaces.
View Article and Find Full Text PDFWe present a method, utilising a smartphone-based miniaturized Raman spectrometer and machine learning for the fast identification and discrimination of adulterated essential oils (EOs). Firstly, the approach was evaluated for discrimination of pure EOs from those adulterated with solvent, namely benzyl alcohol. In the case of ylang-ylang EO, three different types of adulteration were examined, adulteration with solvent, cheaper vegetable oil and a lower price EO.
View Article and Find Full Text PDFLiquid chromatography (LC) has broad applicability in the pharmaceutical industry, from the early stages of drug discovery to reaction monitoring and process control. However, small footprint, truly portable LC systems have not yet been demonstrated and fully evaluated practically for on-line, in-line or at-line pharmaceutical analysis. Herein, a portable, briefcase-sized capillary LC fitted with a miniature multi-deep UV-LED detector has been developed and interfaced with a portable mass spectrometer for on-site pharmaceutical analysis.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFASs) are emerging environmental pollutants of global concern. For rapid field site evaluation, there are very few sensitive, field-deployable analytical techniques. In this work, a portable lightweight capillary liquid chromatography (capLC) system was coupled with a small footprint portable mass spectrometer and configured for field-based applications.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are fluorocarbon compounds in which hydrogen atoms have been partly or entirely replaced by fluorine. They have a very wide range of applications, while they are persistent in the environment and exhibit bioaccumulative and toxic properties. Neither chemical nor biological mechanisms can decompose PFAS due to their strong C-F bonds.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
August 2021
Ylang-ylang (YY) essential oil (EO) is distilled from the fresh-mature flowers of the Annonaceae family tropical tree Cananga odorata [Lam.] Hook. f.
View Article and Find Full Text PDF