Publications by authors named "Pauline van Nies"

The absence of 'shovel-ready' anti-coronavirus drugs during vaccine development has exceedingly worsened the SARS-CoV-2 pandemic. Furthermore, new vaccine-resistant variants and coronavirus outbreaks may occur in the near future, and we must be ready to face this possibility. However, efficient antiviral drugs are still lacking to this day, due to our poor understanding of the mode of incorporation and mechanism of action of nucleotides analogs that target the coronavirus polymerase to impair its essential activity.

View Article and Find Full Text PDF

Coronaviruses have evolved elaborate multisubunit machines to replicate and transcribe their genomes. Central to these machines are the RNA-dependent RNA polymerase subunit (nsp12) and its intimately associated cofactors (nsp7 and nsp8). We use a high-throughput magnetic-tweezers approach to develop a mechanochemical description of this core polymerase.

View Article and Find Full Text PDF

Unlabelled: The nucleotide analog Remdesivir (RDV) is the only FDA-approved antiviral therapy to treat infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The physical basis for efficient utilization of RDV by SARS-CoV-2 polymerase is unknown. Here, we characterize the impact of RDV and other nucleotide analogs on RNA synthesis by the polymerase using a high-throughput, single-molecule, magnetic-tweezers platform.

View Article and Find Full Text PDF

Coronaviruses have evolved elaborate multisubunit machines to replicate and transcribe their genomes. Central to these machines are the RNA-dependent RNA polymerase subunit (nsp12) and its intimately associated cofactors (nsp7 and nsp8). We have used a high-throughput magnetic-tweezers approach to develop a mechanochemical description of this core polymerase.

View Article and Find Full Text PDF

RNA virus survival depends on efficient viral genome replication, which is performed by the viral RNA dependent RNA polymerase (RdRp). The recent development of high throughput magnetic tweezers has enabled the simultaneous observation of dozens of viral RdRp elongation traces on kilobases long templates, and this has shown that RdRp nucleotide addition kinetics is stochastically interrupted by rare pauses of 1-1000 s duration, of which the short-lived ones (1-10 s) are the temporal signature of a low fidelity catalytic pathway. We present a simple and precise temperature controlled system for magnetic tweezers to characterize the replication kinetics temperature dependence between 25°C and 45°C of RdRps from three RNA viruses, i.

View Article and Find Full Text PDF

The biosynthesis of proteins from genomic DNA is a universal process in every living organism. Building a synthetic cell using separate biological parts hence implies to reconstitute a minimal gene expression apparatus and to compartmentalize it in a cell-mimicking environment. Previous studies have demonstrated that the PURE (Protein synthesis Using Recombinant Elements) system could be functionally encapsulated inside lipid vesicles.

View Article and Find Full Text PDF

DNA-guided cell-free protein synthesis using a minimal set of purified components has emerged as a versatile platform in constructive biology. The E. coli-based PURE (protein synthesis using recombinant elements) system offers the basic protein synthesis factory in a prospective minimal cell relying on extant molecules.

View Article and Find Full Text PDF

Replication of DNA-encoded information and its conversion into functional proteins are universal properties of life. In an effort toward the construction of a synthetic minimal cell, we implement here the DNA replication machinery of the Φ29 virus in a cell-free gene expression system. Amplification of a linear DNA template by self-encoded, de novo synthesized Φ29 proteins is demonstrated.

View Article and Find Full Text PDF

With rising interest in utilizing cell-free gene expression systems in bottom-up synthetic biology projects, novel labeling tools need to be developed to accurately report the dynamics and performance of the biosynthesis machinery operating in various reaction conditions. Monitoring the transcription activity has been simplified by the Spinach technology, an RNA aptamer that emits fluorescence upon binding to a small organic dye. Recently, we tracked the fluorescence of Spinach-tagged messenger RNA (mRNA) and its translation product the yellow fluorescent protein (YFP), both synthesized in the protein synthesis using recombinant elements system from a DNA template.

View Article and Find Full Text PDF

The compartmentalization of a cell-free gene expression system inside a self-assembled lipid vesicle is envisioned as the simplest chassis for the construction of a minimal cell. Although crucial for its realization, quantitative understanding of the dynamics of gene expression in bulk and liposome-confined reactions is scarce. Here, we used two orthogonal fluorescence labeling tools to report the amounts of mRNA and protein produced in a reconstituted biosynthesis system, simultaneously and in real-time.

View Article and Find Full Text PDF

Nuclear pore complexes regulate the selective exchange of RNA and proteins across the nuclear envelope in eukaryotic cells. Biomimetic strategies offer new opportunities to investigate this remarkable transport phenomenon. Here, we show selective transport of proteins across individual biomimetic nuclear pore complexes at the single-molecule level.

View Article and Find Full Text PDF