The Na/K-ATPase is the specific receptor for cardiotonic steroids (CTS) such as ouabain and digoxin. At pharmacological concentrations used in the treatment of cardiac conditions, CTS inhibit the ion-pumping function of Na/K-ATPase. At much lower concentrations, in the range of those reported for endogenous CTS in the blood, they stimulate hypertrophic growth of cultured cardiac myocytes through initiation of a Na/K-ATPase-mediated and reactive oxygen species (ROS)-dependent signaling.
View Article and Find Full Text PDFThe first reports of cardiac Na/K-ATPase signaling, published 20 years ago, have opened several major fields of investigations into the cardioprotective action of low/subinotropic concentrations of cardiotonic steroids (CTS). This review focuses on the protective cardiac Na/K-ATPase-mediated signaling triggered by low concentrations of ouabain and other CTS, in the context of the enduring debate over the use of CTS in the ischemic heart. Indeed, as basic and clinical research continues to support effectiveness and feasibility of conditioning interventions against ischemia/reperfusion injury in acute myocardial infarction (AMI), the mechanistic information available to date suggests that unique features of CTS-based conditioning could be highly suitable, alone /or as a combinatory approach.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
February 2018
Ouabain preconditioning (OPC) initiated by low concentrations of the cardiac glycoside (CG) ouabain binding to Na/K-ATPase is relayed by a unique intracellular signaling and protects cardiac myocytes against ischemia/reperfusion injury. To explore more clinically applicable protocols based on CG properties, we tested whether the FDA-approved CG digoxin could trigger cardioprotective effects comparable with those of ouabain using PC, preconditioning and PostC, postconditioning protocols in the Langendorff-perfused mouse heart subjected to global ischemia and reperfusion. Ouabain or digoxin at 10 μmol/L inhibited Na/K-ATPase activity by approximately 30% and activated PKCε translocation by approximately 50%.
View Article and Find Full Text PDF