Serious clinical complications (SCC; CTCAE grade ≥ 3) occur frequently in patients treated for hematological malignancies. Early diagnosis and treatment of SCC are essential to improve outcomes. Here we report a deep learning model-derived SCC-Score to detect and predict SCC from time-series data recorded continuously by a medical wearable.
View Article and Find Full Text PDFPurpose: Intensive treatment protocols for aggressive hematologic malignancies harbor a high risk of serious clinical complications, such as infections. Current techniques of monitoring vital signs to detect such complications are cumbersome and often fail to diagnose them early. Continuous monitoring of vital signs and physical activity by means of an upper arm medical wearable allowing 24/7 streaming of such parameters may be a promising alternative.
View Article and Find Full Text PDF