Publications by authors named "Pauline Pieper"

Visceral leishmaniasis is a neglected protozoan disease with high mortality. Existing treatments exhibit a number of limitations, resulting in a significant challenge for public health, especially in developing countries in which the disease is endemic. With a limited pipeline of potential drugs in clinical trials, natural products could offer an attractive source of new pharmaceutical prototypes, not least due to their high chemodiversity.

View Article and Find Full Text PDF

Covering: 2000 up to 2021Natural products are an important resource in drug discovery, directly or indirectly delivering numerous small molecules for potential development as human medicines. Among the many classes of natural products, alkaloids have a rich history of therapeutic applications. The extensive chemodiversity of alkaloids found in the marine environment has attracted considerable attention for such uses, while the scarcity of these natural materials has stimulated efforts towards their total synthesis.

View Article and Find Full Text PDF

is the etiologic agent of Chagas disease, which affects over seven million people, especially in developing countries. Undesirable side effects are frequently associated with current therapies, which are typically ineffective in the treatment of all stages of the disease. Here, we report the first synthesis of the neolignan dehydrodieugenol B, a natural product recently shown to exhibit activity against .

View Article and Find Full Text PDF

Dehydrodieugenol B and five related natural neolignans were isolated from the Brazilian plant species Nectandra leucantha. Three of these compounds were shown to be active against murine (B16F10) and human (A2058) melanoma cells but non-toxic to human fibroblasts (T75). These results stimulated the preparation of a series of 23 semi-synthetic derivatives in order to explore structure-activity relationships and study the biological potential of these derivatives against B16F10 and A2058 cell lines.

View Article and Find Full Text PDF

Liquid-crystalline tris[60]fullerodendrimers based on first- and second-generation poly(arylester)dendrons carrying cyanobiphenyl mesogens were synthesized for the first time by the olefin cross-metathesis reaction between type I (terminal) and type II (α,β-unsaturated carbonyl) olefinic precursors, using a second-generation Grubbs or Hoveyda-Grubbs catalyst. The modular synthetic approach developed here also allowed the selective preparation of the [60]fullerene-free, mono[60]fullerodendrimer, and bis[60]fullerodendrimer derivatives from the appropriate precursors. As revealed by polarized optical microscopy, differential scanning calorimetry, and small-angle X-ray scattering, all of the materials displayed liquid-crystalline properties.

View Article and Find Full Text PDF

A pillar[5]arene-containing rotaxane building block bearing exchangeable stoppers has been prepared in multigram scale quantities with high yields from the reaction of 2,4-dinitrophenol (DNP) with the inclusion complex resulting from the association of dodecanedioyl chloride with 1,4-diethoxypillar[5]arene. Stopper exchange reactions have been achieved by treatment of the resulting DNP diester with various amines through an addition-elimination mechanism preventing the unthreading of the axle component during the reaction and thus preserving the [2]rotaxane structures. The resulting diamide [2]rotaxane derivatives have thus been obtained in good to excellent yields.

View Article and Find Full Text PDF

Bis-[60]fullerodendrimers were synthesized by assembling [60]fullerene-containing type I (terminal olefin) and type II (α,β-unsaturated carbonyl olefin) olefins through the olefin cross-metathesis reaction. The synthetic modular approach developed in this study allowed the preparation of mono-[60]fullerodendrimers and their [60]fullerene-free analogues. First- and second-generation poly(aryl ester) dendrons carrying cyanobiphenyl mesogens were used as liquid-crystalline promoters.

View Article and Find Full Text PDF