Publications by authors named "Pauline Lang"

The essential L,D-transpeptidase of Mycobacterium tuberculosis (Ldt) catalyses the formation of 3 3 cross-links in cell wall peptidoglycan and is a target for development of antituberculosis therapeutics. Efforts to inhibit Ldt have been hampered by lack of knowledge of how it binds its substrate. To address this gap, we optimised the isolation of natural disaccharide tetrapeptide monomers from the Corynebacterium jeikeium bacterial cell wall through overproduction of the peptidoglycan sacculus.

View Article and Find Full Text PDF

Clavulanic acid is a medicinally important inhibitor of serine β-lactamases (SBLs). We report studies on the mechanisms by which clavulanic acid inhibits representative Ambler class A (TEM-116), C (Escherichia coli AmpC), and D (OXA-10) SBLs using denaturing and non-denaturing mass spectrometry (MS). Similarly to observations with penam sulfones, most of the results support a mechanism involving acyl enzyme complex formation, followed by oxazolidine ring opening without efficient subsequent scaffold fragmentation (at pH 7.

View Article and Find Full Text PDF

Disruption of bacterial cell wall biosynthesis in is a promising target for treating tuberculosis. The l,d-transpeptidase Ldt, which is responsible for the formation of 3 → 3 cross-links in the cell wall peptidoglycan, has been identified as essential for virulence. We optimised a high-throughput assay for Ldt, and screened a targeted library of ∼10 000 electrophilic compounds.

View Article and Find Full Text PDF

Aim: To identify the antifungal susceptibility profile of Candida spp. isolated from the human oral cavity was assessed with meta-analyses of observational studies that collected samples from the oral cavity of human subjects.

Material And Methods: Isolated Candida albicans tested by E-test®; disk diffusion test; microdilution and macrodilution; Sensititre YeastOne; and/or FungiTest.

View Article and Find Full Text PDF

β-Lactams are the most important class of antibacterials, but their use is increasingly compromised by resistance, most importantly via serine β-lactamase (SBL)-catalyzed hydrolysis. The scope of β-lactam antibacterial activity can be substantially extended by coadministration with a penicillin-derived SBL inhibitor (SBLi), i.e.

View Article and Find Full Text PDF

The recent advances in the production of engineered antibodies have facilitated the development and application of tailored, target-specific antibodies. Positron emission tomography (PET) of these antibody-based drug candidates can help to better understand their behavior. In this study, we report an proof-of-concept pretargeted immuno-PET study where we compare a pretargeting vs targeted approach using a new Zr-labeled tetrazine as a bio-orthogonal ligand in an inverse electron demand Diels-Alder (IEDDA) click reaction.

View Article and Find Full Text PDF
Article Synopsis
  • Carbapenems are essential antibiotics but are losing effectiveness due to metallo-β-lactamases (MBLs), which are enzymes that break them down.
  • Researchers discovered indole-2-carboxylates (InCs) as new inhibitors that can effectively target MBLs, maintaining activity against all major clinically relevant classes of these enzymes.
  • In laboratory tests, InCs not only restored the effectiveness of carbapenems against drug-resistant Gram-negative bacteria but also demonstrated a good safety profile and strong efficacy when combined with the antibiotic meropenem in animal models of infection.
View Article and Find Full Text PDF
Article Synopsis
  • Isopenicillin synthase (IPNS) catalyzes the transformation of a specific compound (ACV) and dioxygen into isopenicillin, a key ingredient for natural penicillins and cephalosporins.
  • Recent studies using advanced techniques like X-ray free-electron lasers show how this reaction leads to changes in the enzyme's shape and behavior, affecting its overall function.
  • Findings emphasize the significance of protein movement in facilitating chemical reactions and suggest broader implications for related enzymes in human processes, also showcasing how high-tech crystallography can reveal dynamics in enzyme activities.
View Article and Find Full Text PDF
Article Synopsis
  • Serial femtosecond crystallography is revolutionizing structural biology by allowing researchers to observe protein dynamics with high precision over short timeframes, but most enzymes require ligand diffusion, which can be challenging to study.* -
  • The study introduces a new drop-on-drop sample delivery system that rapidly mixes ligand solutions with microcrystal slurries, enhancing the observation of enzyme-catalyzed reactions.* -
  • Tests using fluorescent dyes and numerical simulations confirm that this method improves ligand diffusion in microdroplets, making it a valuable tool for future serial crystallography research, especially for enzymes reacting with small molecules.*
View Article and Find Full Text PDF

Aims: To evaluate the effects of a high-fat diet (HFD) on the progression of apical periodontitis (AP), local inflammation, systemic antioxidant status, and blood lipid profile in rats.

Main Methods: Sixteen male Wistar rats were fed a standard diet (SD) or a HFD. At the sixth experimental week, the pulp chambers of the mandibular first molars were exposed to develop AP.

View Article and Find Full Text PDF

β-Lactam antibiotics are presently the most important treatments for infections by pathogenic , but their use is increasingly compromised by β-lactamases, including the chromosomally encoded class C AmpC serine-β-lactamases (SBLs). The diazabicyclooctane (DBO) avibactam is a potent AmpC inhibitor; the clinical success of avibactam combined with ceftazidime has stimulated efforts to optimize the DBO core. We report kinetic and structural studies, including four high-resolution crystal structures, concerning inhibition of the AmpC serine-β-lactamase from (AmpC ) by clinically relevant DBO-based inhibitors: avibactam, relebactam, nacubactam, and zidebactam.

View Article and Find Full Text PDF

Cryogenic X-ray diffraction is a powerful tool for crystallographic studies on enzymes including oxygenases and oxidases. Amongst the benefits that cryo-conditions (usually employing a nitro-gen cryo-stream at 100 K) enable, is data collection of di-oxy-gen-sensitive samples. Although not strictly anaerobic, at low temperatures the vitreous ice conditions severely restrict O diffusion into and/or through the protein crystal.

View Article and Find Full Text PDF

Resistance to β-lactam antibacterials, importantly via production of β-lactamases, threatens their widespread use. Bicyclic boronates show promise as clinically useful, dual-action inhibitors of both serine- (SBL) and metallo- (MBL) β-lactamases. In combination with cefepime, the bicyclic boronate taniborbactam is in phase 3 clinical trials for treatment of complicated urinary tract infections.

View Article and Find Full Text PDF

The bicyclic boronate VNRX-5133 (taniborbactam) is a new type of β-lactamase inhibitor in clinical development. We report that VNRX-5133 inhibits serine-β-lactamases (SBLs) and some clinically important metallo-β-lactamases (MBLs), including NDM-1 and VIM-1/2. VNRX-5133 activity against IMP-1 and tested B2/B3 MBLs was lower/not observed.

View Article and Find Full Text PDF

β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.

View Article and Find Full Text PDF

The l,d-transpeptidases (Ldts) are promising antibiotic targets for treating tuberculosis. We report screening of cysteine-reactive inhibitors against LdtMt2 from Mycobacterium tuberculosis. Structural studies on LdtMt2 with potent inhibitor ebselen reveal opening of the benzisoselenazolone ring by a nucleophilic cysteine, forming a complex involving extensive hydrophobic interactions with a substrate-binding loop.

View Article and Find Full Text PDF

The β-lactams remain the most important antibacterials, but their use is increasingly compromised by resistance, importantly by β-lactamases. Although β-lactam and non-β-lactam inhibitors forming stable acyl-enzyme complexes with nucleophilic serine β-lactamases (SBLs) are widely used, these are increasingly susceptible to evolved SBLs and do not inhibit metallo-β-lactamases (MBLs). Boronic acids and boronate esters, especially cyclic ones, can potently inhibit both SBLs and MBLs.

View Article and Find Full Text PDF

Methylation of lysine-4 of histone H3 (H3K4me) is an important regulatory factor in eukaryotic transcription. Removal of the transcriptionally activating H3K4 methylation is catalyzed by histone demethylases, including the Jumonji C (JmjC) KDM5 subfamily. The JmjC KDMs are Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenases, some of which are associated with cancer.

View Article and Find Full Text PDF

Infected root canal or acute apical abscess exudates can harbour several species, including Fusobacterium, Porphyromonas, Prevotella, Parvimonas, Streptococcus, Treponema, Olsenella and not-yet cultivable species. A systematic review and meta-analysis was performed to assess resistance rates to antimicrobial agents in clinical studies that isolated bacteria from acute endodontic infections. Electronic databases and the grey literature were searched up to May 2015.

View Article and Find Full Text PDF