Publications by authors named "Pauline L Pfuderer"

Background & Aims: Owing to the high load of immunogenic frameshift neoantigens, tumors arising in individuals with Lynch syndrome (LS), the most common inherited colorectal cancer (CRC) syndrome, are characterized by a pronounced immune infiltration. However, the immune status of normal colorectal mucosa in LS is not well characterized. We assessed the immune infiltrate in tumor-distant normal colorectal mucosa from LS CRC patients, sporadic microsatellite-unstable (MSI) and microsatellite-stable (MSS) CRC patients, and cancer-free LS carriers.

View Article and Find Full Text PDF

Regular colonoscopy even with short intervals does not prevent all colorectal cancers (CRC) in Lynch syndrome (LS). In the present study, we asked whether cancers detected under regular colonoscopy surveillance (incident cancers) are phenotypically different from cancers detected at first colonoscopy (prevalent cancers). We analyzed clinical, histological, immunological and mutational characteristics, including panel sequencing and high-throughput coding microsatellite (cMS) analysis, in 28 incident and 67 prevalent LS CRCs ( total = 95).

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) shows remarkable clinical effects in patients with metastatic microsatellite-unstable (MSI) cancer. However, markers identifying potential non-responders are missing. We examined the prevalence of ( mutations, a common immune evasion mechanism, in stage IV MSI gastrointestinal cancer and its influence on metastatic pattern and patients' survival under ICB.

View Article and Find Full Text PDF

The immune system can recognize and attack cancer cells, especially those with a high load of mutation-induced neoantigens. Such neoantigens are abundant in DNA mismatch repair (MMR)-deficient, microsatellite-unstable (MSI) cancers. MMR deficiency leads to insertion/deletion (indel) mutations at coding microsatellites (cMS) and to neoantigen-inducing translational frameshifts.

View Article and Find Full Text PDF

Background: Microsatellite-unstable (MSI) tumours show a high load of mutational neoantigens, as a consequence of DNA mismatch repair deficiency. Consequently, MSI tumours commonly present with dense immune infiltration and develop immune evasion mechanisms. Whether improved lymphocyte recruitment contributes to the pronounced immune infiltration in MSI tumours is unknown.

View Article and Find Full Text PDF