Publications by authors named "Pauline Kolbeck"

Shallow genome-wide cell-free DNA (cfDNA) sequencing holds great promise for non-invasive cancer monitoring by providing reliable copy number alteration (CNA) and fragmentomic profiles. Single nucleotide variations (SNVs) are, however, much harder to identify with low sequencing depth due to sequencing errors. Here we present Nanopore Rolling Circle Amplification (RCA)-enhanced Consensus Sequencing (NanoRCS), which leverages RCA and consensus calling based on genome-wide long-read nanopore sequencing to enable simultaneous multimodal tumor fraction estimation through SNVs, CNAs, and fragmentomics.

View Article and Find Full Text PDF

Protein-DNA interactions and protein-mediated DNA compaction play key roles in a range of biological processes. The length scales typically involved in DNA bending, bridging, looping, and compaction (≥1 kbp) are challenging to address experimentally or by all-atom molecular dynamics simulations, making coarse-grained simulations a natural approach. Here, we present a simple and generic coarse-grained model for DNA-protein and protein-protein interactions and investigate the role of the latter in the protein-induced compaction of DNA.

View Article and Find Full Text PDF

Viruses have remarkable physical properties and complex interactions with their environment. However, their aggregation in confined spaces remains unexplored, although this phenomenon is of paramount importance for understanding viral infectivity. Using hydrodynamical driving and optical detection, we developed a method to detect the transport of single virus in real time through synthetic nanopores.

View Article and Find Full Text PDF

Magnetic nanoparticles (MNPs) provide new opportunities for enzyme-free biosensing of nucleic acid biomarkers and magnetic actuation by patterning on DNA origami, yet how the DNA grafting density affects their dynamics and accessibility remains poorly understood. Here, we performed surface functionalization of MNPs with single-stranded DNA (ssDNA) click chemistry with a tunable grafting density, which enables the encapsulation of single MNPs inside a functional polymeric layer. We used several complementary methods to show that particle translational and rotational dynamics exhibit a sigmoidal dependence on the ssDNA grafting density.

View Article and Find Full Text PDF
Article Synopsis
  • DNA contains our genetic information and plays a crucial role in binding interactions with various molecules, influenced by mechanical strains and changes in its structure.
  • The study presents a numerical model that examines how DNA's topological forms and supercoiling affect these binding interactions, particularly focusing on fluorescent intercalators that allow for quantification through fluorescence detection.
  • Using a single-molecule assay, researchers demonstrated how different intercalator densities vary in supercoiled versus nicked DNA, offering insights into binding kinetics and DNA dynamics, which could have practical applications in detecting DNA and studying its behavior in cells.
View Article and Find Full Text PDF

Force and torque spectroscopy have provided unprecedented insights into the mechanical properties, conformational transitions, and dynamics of DNA and DNA-protein complexes, notably nucleosomes. Reliable single-molecule manipulation measurements require, however, specific and stable attachment chemistries to tether the molecules of interest. Here, we present a functionalization strategy for DNA that enables high-yield production of constructs for torsionally constrained and very stable attachment.

View Article and Find Full Text PDF

Mimicking and extending the gating properties of biological pores is of paramount interest for the fabrication of membranes that could be used in filtration or drug processing. Here, we build a selective and switchable nanopore for macromolecular cargo transport. Our approach exploits polymer graftings within artificial nanopores to control the translocation of biomolecules.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) is a powerful technique for imaging molecules, macromolecular complexes, and nanoparticles with nanometer resolution. However, AFM images are distorted by the shape of the tip used. These distortions can be corrected if the tip shape can be determined by scanning a sample with features sharper than the tip and higher than the object of interest.

View Article and Find Full Text PDF

DNA supercoiling is a key regulatory mechanism that orchestrates DNA readout, recombination, and genome maintenance. DNA-binding proteins often mediate these processes by bringing two distant DNA sites together, thereby inducing (transient) topological domains. In order to understand the dynamics and molecular architecture of protein-induced topological domains in DNA, quantitative and time-resolved approaches are required.

View Article and Find Full Text PDF

SYBR Gold is a commonly used and particularly bright fluorescent DNA stain, however, its chemical structure is unknown and its binding mode to DNA remains controversial. Here, we solve the structure of SYBR Gold by NMR and mass spectrometry to be [2-[N-(3-dimethylaminopropyl)-N-propylamino]-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenyl-quinolinium] and determine its extinction coefficient. We quantitate SYBR Gold binding to DNA using two complementary approaches.

View Article and Find Full Text PDF

Nucleic acids are central to the storage and transmission of genetic information and play essential roles in many cellular processes. Quantitative understanding and modeling of their functions and properties requires quantitative experimental characterization. We use magnetic tweezers (MT) to apply precisely calibrated stretching forces and linking number changes to DNA and RNA molecules tethered between a surface and superparamagnetic beads.

View Article and Find Full Text PDF

Retroviral integration, the process of covalently inserting viral DNA into the host genome, is a point of no return in the replication cycle. Yet, strand transfer is intrinsically iso-energetic and it is not clear how efficient integration can be achieved. Here we investigate the dynamics of strand transfer and demonstrate that consecutive nucleoprotein intermediates interacting with a supercoiled target are increasingly stable, resulting in a net forward rate.

View Article and Find Full Text PDF

Ru(ii)-complexes with polyazaaromatic ligands can undergo direct electron transfer with guanine nucleobases on blue light excitation that results in DNA lesions with phototherapeutic potential. Here we use single molecule approaches to demonstrate DNA binding mode heterogeneity and evaluate how multivalent binding governs the photochemistry of [Ru(TAP)3]2+ (TAP = 1,4,5,8-tetraazaphenanthrene).

View Article and Find Full Text PDF