Publications by authors named "Pauline Formaglio"

Human monoclonal antibodies (hmAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on the sporozoite surface are a promising tool for preventing malaria infection. However, their mechanisms of protection remain unclear. Here, using 13 distinctive PfCSP hmAbs, we provide a comprehensive view of how PfCSP hmAbs neutralize sporozoites in host tissues.

View Article and Find Full Text PDF

Plasmodium sporozoites actively migrate in the dermis and enter blood vessels to infect the liver. Despite their importance for malaria infection, little is known about these cutaneous processes. We combine intravital imaging in a rodent malaria model and statistical methods to unveil the parasite strategy to reach the bloodstream.

View Article and Find Full Text PDF

Introduction: sporozoites (SPZ) inoculated by mosquitoes into the skin of the mammalian host migrate to the liver before infecting hepatocytes. Previous work demonstrated that early production of IL-6 in the liver is detrimental for the parasite growth, contributing to the acquisition of a long-lasting immune protection after immunization with live attenuated parasites.

Methods: Considering that IL-6 as a critical pro-inflammatory signal, we explored a novel approach whereby the parasite itself encodes for the murine IL-6 gene.

View Article and Find Full Text PDF

The uptake and digestion of host hemoglobin by malaria parasites during blood-stage growth leads to significant oxidative damage of membrane lipids. Repair of lipid peroxidation damage is crucial for parasite survival. Here, we demonstrate that Plasmodium falciparum imports a host antioxidant enzyme, peroxiredoxin 6 (PRDX6), during hemoglobin uptake from the red blood cell cytosol.

View Article and Find Full Text PDF

The sole currently approved malaria vaccine targets the circumsporozoite protein-the protein that densely coats the surface of sporozoites, the parasite stage deposited in the skin of the mammalian host by infected mosquitoes. However, this vaccine only confers moderate protection against clinical diseases in children, impelling a continuous search for novel candidates. In this work, we studied the importance of the membrane-associated erythrocyte binding-like protein (MAEBL) for infection by sporozoites.

View Article and Find Full Text PDF

During transmission of malaria-causing parasites from mosquitoes to mammals, Plasmodium sporozoites migrate rapidly in the skin to search for a blood vessel. The high migratory speed and narrow passages taken by the parasites suggest considerable strain on the sporozoites to maintain their shape. Here, we show that the membrane-associated protein, concavin, is important for the maintenance of the Plasmodium sporozoite shape inside salivary glands of mosquitoes and during migration in the skin.

View Article and Find Full Text PDF

Nitric oxide (NO) is an important antimicrobial effector but also prevents unnecessary tissue damage by shutting down the recruitment of monocyte-derived phagocytes. Intracellular pathogens such as Leishmania major can hijack these cells as a niche for replication. Thus, NO might exert containment by restricting the availability of the cellular niche required for efficient pathogen proliferation.

View Article and Find Full Text PDF

Upon the onset of inflammatory responses, bacterial pathogens are confronted with altered tissue microenvironments which can critically impact on their metabolic activity and growth. Changes in these parameters have however remained difficult to analyze over time, which would be critical to dissect the interplay between the host immune response and pathogen physiology. Here, we established an in vivo biosensor for measuring the growth rates of Staphylococcus aureus (S.

View Article and Find Full Text PDF

Following the RTS,S malaria vaccine, which showed only partial protection with short-term memory, there is strong support to develop second-generation malaria vaccines that yield higher efficacy with longer duration. The use of replicating viral vectors to deliver subunit vaccines is of great interest due to their capacity to induce efficient cellular immune responses and long-term memory. The measles vaccine virus offers an efficient and safe live viral vector that could easily be implemented in the field.

View Article and Find Full Text PDF

The virulence of intracellular pathogens such as Leishmania major (L. major) relies largely on their ability to undergo cycles of replication within phagocytes, release, and uptake into new host cells. While all these steps are critical for successful establishment of infection, neither the cellular niche of efficient proliferation, nor the spread to new host cells have been characterized in vivo.

View Article and Find Full Text PDF

Background: Yeast cells represent an established bioreactor to produce recombinant proteins for subunit vaccine development. In addition, delivery of vaccine antigens directly within heat-inactivated yeast cells is attractive due to the adjuvancy provided by the yeast cell. In this study, Pichia pastoris yeast lysates carrying the nucleoprotein (N) from the measles vaccine virus were evaluated as a novel subunit vaccine platform to deliver the circumsporozoite surface antigen (CS) of Plasmodium.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions.

View Article and Find Full Text PDF

In vivo imaging has revealed new details about how the malaria parasite enters the bloodstream.

View Article and Find Full Text PDF

The malaria parasite, Plasmodium, requires iron for growth, but how it imports iron remains unknown. We characterize here a protein that belongs to the ZIP (Zrt-, Irt-like Protein) family of metal ion transport proteins and have named ZIP domain-containing protein (ZIPCO). Inactivation of the ZIPCO-encoding gene in Plasmodium berghei, while not affecting the parasite's ability to multiply in mouse blood and to infect mosquitoes, greatly impairs its capacity to develop inside hepatocytes.

View Article and Find Full Text PDF
Article Synopsis
  • - Yeasts, particularly Pichia pastoris, are being explored as a dual system for producing and delivering malaria vaccines using the circumsporozoite protein (CS) from the Plasmodium berghei parasite, avoiding high purification costs and safety concerns with adjuvants.
  • - The N-PbCS fusion protein created in yeast forms multimeric ribonucleoprotein rods, which were shown to elicit a significant immune response in C57Bl/6 mice, leading to reduced infection severity.
  • - This strategy not only demonstrates the effectiveness of whole yeast as an intrinsic adjuvant but also opens the door for developing multivalent vaccine formulations that could improve malaria immunization efforts.
View Article and Find Full Text PDF

Plasmodium sporozoites are able to migrate through host cells by breaching their plasma membrane and gliding inside their cytoplasm. This migratory activity, called cell traversal (CT), was studied in vivo mainly using mutant sporozoites lacking the ability to wound host cells, and thus to perform CT. However, direct evidence of CT activity in host tissues by wild-type sporozoites remains scarce.

View Article and Find Full Text PDF

Malaria infection starts when the sporozoite stage of the Plasmodium parasite is injected into the skin by a mosquito. Sporozoites are known to traverse host cells before finally invading a hepatocyte and multiplying into erythrocyte-infecting forms, but how sporozoites reach hepatocytes in the liver and the role of host cell traversal (CT) remain unclear. We report the first quantitative imaging study of sporozoite liver infection in rodents.

View Article and Find Full Text PDF

Intravital fluorescence microscopy is an invaluable tool to study a dynamic phenomenon through its direct observation in living organisms. This technique can combine qualitative and quantitative analysis and has been capital to address long-standing questions about Plasmodium biology. Beyond a descriptive view of the parasite life cycle, the possibility to image infection in transgenic animals in which a specific cell type, molecule or process is labeled opens new possibilities to study host cell-parasite interactions in cellular and molecular details.

View Article and Find Full Text PDF