Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids.
View Article and Find Full Text PDFA straightforward modification route to obtain mono- and di-substituted anthroyl ester bridge functionalized dinuclear Au(I) bis-N-heterocyclic carbene complexes is presented. The functionalization can be achieved starting from a hydroxyl-functionalized ligand precursor followed by transmetallation of the corresponding Ag complex or via esterification of the hydroxyl-functionalized gold complex. The compounds are characterized by NMR-spectroscopy, ESI-MS, elemental analysis and SC-XRD.
View Article and Find Full Text PDFThe syn- and anti-isomers of dinuclear Au(I) complexes of the type Au(L)(PF) (R = isopropyl or mesityl) bearing 2-hydroxyethane-1,1-diyl-bridged bisimidazolylidene ligands were separated by reversed phase high performance liquid chromatography (HPLC) and characterized by NMR spectroscopy, elemental analysis, ESI mass spectrometry as well as single crystal X-ray diffraction analysis. Evaluation of the antiproliferative activity of the isolated isomers has shown very small difference in their cytotoxic behavior in various cancer cell lines. Additional counter-anion exchange (hexafluorophosphate to chloride) allows to increase the water solubility of Au(L)(PF) and leads to higher antiproliferative activity when compared to the hexafluorophosphate-complex.
View Article and Find Full Text PDFFour novel dinuclear Ag(i) and Au(i) NHC complexes bearing two 2,2-acetate-bridged bisimidazolylidene ligands (R = Me and iPr) of zwitterionic and metallacyclic forms are reported. The functionalized methylene bridge of the ligands leads to water soluble complexes, which have been characterized by NMR and IR spectroscopy, elemental analysis and single crystal X-ray diffraction in the case of L-H-PF, Ag(L), Ag(L) and Au(L). Dimerization processes caused by hydrogen bonding or Ag(i)-carboxylate interactions in the solid state were observed for L-H-PF and Ag(L).
View Article and Find Full Text PDFThe electrochemical performance of ionic liquid electrolytes containing different sodium salts dissolved in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPTFSI) evaluated in a half-cell configuration using spherical P2-NaCoMnO (NCO) cathodes are reported. Among the various electrolytes investigated, sodium bis(fluorosulfonyl)imide (NaFSI) (0.5 M) in BMPTFSI shows the best electrochemical performance with a significant improvement in cycling stability (90% capacity retention after 500 cycles at 50 mA g in a half cell versus Na metal anode) compared with conventional NaClO (1 M) in ethylene carbonate/propylene carbonate electrolytes (39% retention after 500 cycles).
View Article and Find Full Text PDFThe dinuclear ruthenium(ii) phosphine complexes Ru2Cl(O2CCHxF3-x)3(PPh3)4(μ-H2O) (x = 0, 1, 2), containing fluoroacetate ligands, were prepared from RuCl2(PPh3)3 and NaO2CCHxF3-x in tBuOH. The X-ray characterization of these complexes reveals a bridging water molecule, stabilized by hydrogen bonds with the fluoroacetate ligands. The isolation of the complex Ru(O2CCF3)2(PPh3)2 is described, starting from RuCl2(PPh3)3 or Ru2Cl(O2CCF3)3(PPh3)4(μ-H2O) and TlO2CCF3, correcting the reported preparation in which Ru2Cl(O2CCF3)3(PPh3)4(μ-H2O) was obtained.
View Article and Find Full Text PDFSodium ion batteries (SIBs) based on IL electrolytes have attracted great attention, particularly in large-scale energy storage systems for renewable energy due to the abundance of sodium and the excellent safety resulting from the use of non-flammable ionic liquid (IL) electrolytes. In this article, a series of 15 functionalized room temperature ionic liquids (RTILs) suitable as electrolytes is presented. Special emphasis was laid on the purity of the synthesized RTILs and a consistent and uniform characterization of their physicochemical properties.
View Article and Find Full Text PDF