Mammals have limited capacity for heart regeneration, whereas zebrafish have extraordinary regeneration abilities. During zebrafish heart regeneration, endothelial cells promote cardiomyocyte cell cycle reentry and myocardial repair, but the mechanisms responsible for promoting an injury microenvironment conducive to regeneration remain incompletely defined. Here, we identify the matrix metalloproteinase Mmp14b as an essential regulator of heart regeneration.
View Article and Find Full Text PDFThe founder cells of the Nucleus pulposus, the centre of the intervertebral disc, originate in the embryonic notochord. After birth, mature notochordal cells (NC) are identified as key regulators of disc homeostasis. Better understanding of their biology has great potential in delaying the onset of disc degeneration or as a regenerative-cell source for disc repair.
View Article and Find Full Text PDFDeveloping neurons of the peripheral nervous system reach their targets via cues that support directional growth, a process known as axon guidance. In investigating how sympathetic axons reach the heart in mice, we discovered that a combination of guidance cues are employed in sequence to refine axon outgrowth, a process we term second-order guidance. Specifically, endothelin-1 induces sympathetic neurons expressing the receptor Ednra to project to the vena cavae leading to the heart.
View Article and Find Full Text PDFThe combination of modern interventional and preventive medicine has led to an epidemic of ageing. While this phenomenon is a positive consequence of an improved lifestyle and achievements in a society, the longer life expectancy is often accompanied by decline in quality of life due to musculoskeletal pain and disability. The Aarhus Regenerative Orthopaedics Symposium (AROS) 2015 was motivated by the need to address regenerative challenges in an ageing population by engaging clinicians, basic scientists, and engineers.
View Article and Find Full Text PDFThe extent of ageing in the musculoskeletal system during the life course affects the quality and length of life. Loss of bone, degraded articular cartilage, and degenerate, narrowed intervertebral discs are primary features of an ageing skeleton, and together they contribute to pain and loss of mobility. This review covers the cellular constituents that make up some key components of the musculoskeletal system and summarizes discussion from the 2015 Aarhus Regenerative Orthopaedic Symposium (AROS) (Regeneration in the Ageing Population) about how each particular cell type alters within the ageing skeletal microenvironment.
View Article and Find Full Text PDFRegenerative medicine is considered an attractive prospect for the treatment of intervertebral disc (IVD) degeneration. To assess the efficacy of the regenerative approach, animal models of IVD degeneration are needed. Among these animal models, chemonucleolysis based on the enzymatic degradation of the Nucleus Pulposus (NP) is often used, but this technique remains far from the natural physiopathological process of IVD degeneration.
View Article and Find Full Text PDFDegenerative disc disease (DDD) primarily affects the central part of the intervertebral disc namely the nucleus pulposus (NP). DDD explains about 40% of low back pain and is characterized by massive cellular alterations that ultimately result in the disappearance of resident NP cells. Thus, repopulating the NP with regenerative cells is a promising therapeutic approach and remains a great challenge.
View Article and Find Full Text PDFA large proportion of low back pain may be explained by intervertebral disc (IVD) degeneration. Currently, the process leading to IVD degeneration highlights the pivotal role of IVD cells. The number of these cells drastically decreases and does not support a spontaneous repair of the tissue.
View Article and Find Full Text PDFThe major cardiac voltage-gated sodium channel Nav1.5 associates with proteins that regulate its biosynthesis, localization, activity and degradation. Identification of partner proteins is crucial for a better understanding of the channel regulation.
View Article and Find Full Text PDFLumbar intervertebral discs (IVDs) are prone to degeneration upon skeletal maturity. In fact, this process could explain approximately 40% of the cases of low back pain in humans. Despite the efficiency of pain-relieving treatments, the scientific community seeks to develop innovative therapeutic approaches that might limit the use of invasive surgical procedures (e.
View Article and Find Full Text PDF