Sleep is an important contributor for neural maturation and emotion regulation during adolescence, with long-term effects on a range of white matter tracts implicated in affective processing in at-risk populations. We investigated the effects of adolescent sleep patterns on longitudinal changes in white matter development and whether this is related to the emergence of emotional (internalizing) problems. Sleep patterns and internalizing problems were assessed using self-report questionnaires in adolescents recruited in the general population followed up from age 14-19 years (N = 111 White matter structure was measured using diffusion tensor imaging (DTI) and estimated using fractional anisotropy (FA).
View Article and Find Full Text PDFJ Am Acad Child Adolesc Psychiatry
January 2023
Objective: Adolescence is a critical period for circadian rhythm, with a strong shift toward eveningness around age 14. Also, eveningness in adolescence has been found to predict later onset of depressive symptoms. However, no previous study has investigated structural variations associated with chronotype in early adolescence and how this adds to the development of depressive symptoms.
View Article and Find Full Text PDFChanging sleep rhythms in adolescents often lead to sleep deficits and a delay in sleep timing between weekdays and weekends. The adolescent brain, and in particular the rapidly developing structures involved in emotional control, are vulnerable to external and internal factors. In our previous study in adolescents at age 14, we observed a strong relationship between weekend sleep schedules and regional medial prefrontal cortex grey matter volumes.
View Article and Find Full Text PDFThough adolescence is a time of emerging sex differences in emotions, sex-related differences in the anatomy of the maturing brain has been under-explored over this period. The aim of this study was to investigate whether puberty and sexual differentiation in brain maturation could explain emotional differences between girls and boys during adolescence. We adapted a dedicated longitudinal pipeline to process structural and diffusion images from 335 typically developing adolescents between 14 and 16 years.
View Article and Find Full Text PDFHere we report the first and most robust evidence about how sleep habits are associated with regional brain grey matter volumes and school grade average in early adolescence. Shorter time in bed during weekdays, and later weekend sleeping hours correlate with smaller brain grey matter volumes in frontal, anterior cingulate, and precuneus cortex regions. Poor school grade average associates with later weekend bedtime and smaller grey matter volumes in medial brain regions.
View Article and Find Full Text PDF