Publications by authors named "Pauline Andreu"

Tumor-associated myeloid cells have been implicated in regulating many of the "hallmarks of cancer" and thus fostering solid tumor development and metastasis. However, the same innate leukocytes also participate in anti-tumor immunity and restraint of malignant disease. While many factors regulate the propensity of myeloid cells to promote or repress cancerous growths, polarized adaptive immune responses by B and T lymphocytes have been identified as regulators of many aspects of myeloid cell biology by specifically regulating their functional capabilities.

View Article and Find Full Text PDF

Chronically activated leukocytes recruited to premalignant tissues functionally contribute to cancer development; however, mechanisms underlying pro- versus anti-tumor programming of neoplastic tissues by immune cells remain obscure. Using the K14-HPV16 mouse model of squamous carcinogenesis, we report that B cells and humoral immunity foster cancer development by activating Fcgamma receptors (FcgammaRs) on resident and recruited myeloid cells. Stromal accumulation of autoantibodies in premalignant skin, through their interaction with activating FcgammaRs, regulate recruitment, composition, and bioeffector functions of leukocytes in neoplastic tissue, which in turn promote neoplastic progression and subsequent carcinoma development.

View Article and Find Full Text PDF

During breast cancer development, increased presence of leukocytes in neoplastic stroma parallels disease progression; however, the functional significance of leukocytes in regulating protumor versus antitumor immunity in the breast remains poorly understood. Utilizing the MMTV-PyMT model of mammary carcinogenesis, we demonstrate that IL-4-expressing CD4(+) T lymphocytes indirectly promote invasion and subsequent metastasis of mammary adenocarcinomas by directly regulating the phenotype and effector function of tumor-associated CD11b(+)Gr1(-)F4/80(+) macrophages that in turn enhance metastasis through activation of epidermal growth factor receptor signaling in malignant mammary epithelial cells. Together, these data indicate that antitumor acquired immune programs can be usurped in protumor microenvironments and instead promote malignancy by engaging cellular components of the innate immune system functionally involved in regulating epithelial cell behavior.

View Article and Find Full Text PDF

Much progress has been made in understanding how matrix remodeling proteases, including metalloproteinases, serine proteases, and cysteine cathepsins, functionally contribute to cancer development. In addition to modulating extracellular matrix metabolism, proteases provide a significant protumor advantage to developing neoplasms through their ability to modulate bioavailability of growth and proangiogenic factors, regulation of bioactive chemokines and cytokines, and processing of cell-cell and cell-matrix adhesion molecules. Although some proteases directly regulate these events, it is now evident that some proteases indirectly contribute to cancer development by regulating posttranslational activation of latent zymogens that then directly impart regulatory information.

View Article and Find Full Text PDF

Wnt/beta-catenin signalling plays a key role in the homeostasis of the intestinal epithelium. Whereas its role in the maintenance of the stem cell compartment has been clearly demonstrated, its role in the Paneth cell fate remains unclear. We performed genetic studies to elucidate the functions of the Wnt/beta-catenin pathway in Paneth cell differentiation.

View Article and Find Full Text PDF

We analyzed the expression profiles of intestinal adenomas from a new murine familial adenomatous polyposis model (Apc(delta14/+)) using suppression subtractive hybridization to identify novel diagnostic markers of colorectal carcinogenesis. We identified 18 candidate genes having increased expression levels in the adenoma. Subsequent Northern blotting, real-time reverse transcription-PCR, and in situ hybridization analysis confirmed their induction in beta-catenin-activated epithelial cells of murine adenomas.

View Article and Find Full Text PDF

Loss of Apc appears to be one of the major events initiating colorectal cancer. However, the first events responsible for this initiation process are not well defined and the ways in which different epithelial cell types respond to Apc loss are unknown. We used a conditional gene-ablation approach in transgenic mice expressing tamoxifen-dependent Cre recombinase all along the crypt-villus axis to analyze the immediate effects of Apc loss in the small intestinal epithelium, both in the stem-cell compartment and in postmitotic epithelial cells.

View Article and Find Full Text PDF