Biochem Biophys Res Commun
November 2024
Scope: Triglyceride-based lipid emulsions are critical for total parenteral nutrition (TPN), but their long-term use has adverse effects, such as severe liver dysfunction necessitating improved formulations. This study compares the uptake mechanism and intracellular fate of novel glycerol-stabilized nano-sized lipid emulsions with conventional emulsions in CD4 T cells, focusing on their impact on cellular metabolism.
Methods And Results: Nanoemulsions were formulated with increased glycerol content.
Background And Aims: Parenteral nutrition (PN) rich in n-6 and n-3 long-chain fatty acids is used in clinical practice for nourishing patients who are unable to receive adequate nutrition through their digestive systems. In this study, we compare the effect on inflammation of the commonly used lipid emulsions Omegaven (n-3-rich) and Intralipid (n-6-rich) in human peripheral blood mononuclear cells (PBMCs).
Methods: PBMCs were treated with different doses of n-3-rich Omegaven and n-6-rich Intralipid and the immune cells were characterized by flow cytometry.
Rhinoviruses and allergens, such as house dust mite are major agents responsible for asthma exacerbations. The influence of pre-existing airway inflammation on the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely unknown. We analyse mechanisms of response to viral infection in experimental in vivo rhinovirus infection in healthy controls and patients with asthma, and in in vitro experiments with house dust mite, rhinovirus and SARS-CoV-2 in human primary airway epithelium.
View Article and Find Full Text PDFSARS-CoV-2 enters human cells through its main receptor, angiotensin-converting enzyme 2 (ACE2), which constitutes a limiting factor of infection. Recent findings demonstrating novel ACE2 isoforms implicate that this receptor is regulated in a more complex way than previously anticipated. However, it remains unknown how various inflammatory conditions influence the abundance of these ACE2 variants.
View Article and Find Full Text PDFBackground: While lipid emulsions in modern formulations for total parenteral nutrition (TPN) provide essential fatty acids and dense calories, they also promote inflammation and immunometabolic disruptions.
Objectives: We aimed to develop a novel lipid emulsion for TPN use with superior immunometabolic actions compared with available standard lipid emulsions.
Methods: A novel lipid emulsion [Vegaven (VV)] containing 30% of 18-carbon n-3 fatty acids (α-linolenic acid and stearidonic acid) was developed for TPN (VV-TPN) and compared with TPN containing soybean oil-based lipid emulsion (IL-TPN) and fish-oil-based lipid emulsion (OV-TPN).
Background: Lipid emulsions are a key component of total parenteral nutrition (TPN) and are administered to patients who are unable to ingest their daily required calories orally. Lipid emulsions rich with n-6 (ω-6) PUFAs are known to cause parenteral nutrition-associated liver disease and have inflammatory side effects, whereas n-3 PUFA-rich emulsions have favourable clinical outcomes.
Objectives: The present study used targeted lipid mediator analysis to investigate the metabolism of a n-3 PUFA-rich lipid emulsion and a n-6 PUFA-rich lipid emulsion in a mouse model of TPN and in primary human monocyte-derived macrophages (MDMs) and CD4+ T cells.
The respiratory epithelium constitutes the physical barrier between the human body and the environment, thus providing functional and immunological protection. It is often exposed to allergens, microbial substances, pathogens, pollutants, and environmental toxins, which lead to dysregulation of the epithelial barrier and result in the chronic inflammation seen in allergic diseases and asthma. This epithelial barrier dysfunction results from the disturbed tight junction formation, which are multi-protein subunits that promote cell-cell adhesion and barrier integrity.
View Article and Find Full Text PDFProstaglandins Leukot Essent Fatty Acids
November 2021
Obesity leads to chronic inflammation of the adipose tissue which is tightly associated with the metabolic syndrome, type 2 diabetes and cardiovascular disease. Inflammation of the adipose tissue is mainly characterized by the presence of crown-like structures composed of inflammatory macrophages in the neighborhood of adipocytes. Resolvin D1 (RvD1), a potent anti-inflammatory and pro-resolving lipid mediator derived from the omega-3 fatty acid docosahexaenoic acid, has been shown to reduce the inflammatory tone of adipose tissue in animal models but the underlying mechanism is not clear.
View Article and Find Full Text PDFPharmacol Res Perspect
August 2021
Asthma is a heterologous disease that is influenced by complex interactions between multiple environmental exposures, metabolism, and host immunoregulatory processes. Specific metabolites are increasingly recognized to influence respiratory inflammation. However, the role of protein-derived metabolites in regulating inflammatory responses in the lung are poorly described.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) is characterized by chronic relapsing inflammation in the intestine. Given their role in regulation of inflammation, long-chain n-3 polyunsaturated fatty acids (PUFAs) represent a potential supplementary therapeutic approach to current drug regimens used for IBD. Mechanistically, there is ample evidence for an anti-inflammatory and pro-resolution effect of long-chain n-3 PUFAs after they incorporate into cell membrane phospholipids.
View Article and Find Full Text PDFScope: The aim of this study is to test whether the choice of the lipid emulsion in total parenteral nutrition (TPN), that is, n-3 fatty acid-based Omegaven versus n-6 fatty acid-based Intralipid, determines inflammation in the liver, the incretin profile, and insulin resistance.
Methods And Results: Jugular vein catheters (JVC) are placed in C57BL/6 mice and used for TPN for 7 days. Mice are randomized into a saline group (saline infusion with oral chow), an Intralipid group (IL-TPN, no chow), an Omegaven group (OV-TPN, no chow), or a chow only group (without JVC).
Background: Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19.
View Article and Find Full Text PDFAnn Allergy Asthma Immunol
November 2020
Objective: Our understanding of the origin of allergic diseases has increased in recent years, highlighting the importance of microbial dysbiosis and epithelial barrier dysfunction in affected tissues. Exploring the microbial-epithelial-immune crosstalk underlying the mechanisms of allergic diseases will allow the development of novel prevention and treatment strategies for allergic diseases.
Data Sources: This review summarizes the recent advances in microbial, epithelial, and immune interactions in atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, and asthma.
Total parenteral nutrition (TPN) is a life-saving therapy administered to millions of patients. However, it is associated with significant adverse effects, namely liver injury, risk of infections, and metabolic derangements. In this review, the underlying causes of TPN-associated adverse effects, specifically gut atrophy, dysbiosis of the intestinal microbiome, leakage of the epithelial barrier with bacterial invasion, and inflammation are first described.
View Article and Find Full Text PDFBackground: A defective epithelial barrier is found in patients with allergic rhinitis (AR) and asthma; however, the underlying mechanisms remain poorly understood. Histone deacetylase (HDAC) activity has been identified as a crucial driver of allergic inflammation and tight junction dysfunction.
Objective: We investigated whether HDAC activity has been altered in patients with AR and in a mouse model of house dust mite (HDM)-induced allergic asthma and whether it contributed to epithelial barrier dysfunction.
Background: Many skin and mucosal inflammatory disorders, such as atopic dermatitis, have been associated with an impaired epithelial barrier function, which allows allergens, pollutants, or microbes to enter the tissue and activate the immune response. The aim of this study was to establish a method to directly assess in vivo the epidermal barrier function by electrical impedance (EI) spectroscopy.
Methods: Mice epidermal barrier was damaged by epicutaneous application of proteases and cholera toxin and by tape stripping.
Background: Group 2 innate lymphoid cells (ILC2s) play critical roles in induction and exacerbation of allergic airway inflammation. Thus clarification of the mechanisms that underlie regulation of ILC2 activation has received significant attention. Although innate lymphoid cells are divided into 3 major subsets that mirror helper effector T-cell subsets, counterpart subsets of regulatory T cells have not been well characterized.
View Article and Find Full Text PDFBackground: Defects in the epithelial barrier have recently been associated with asthma and other allergies. The influence of laundry detergents on human bronchial epithelial cells (HBECs) and their barrier function remain unknown.
Objective: We investigated the effects of laundry detergents on cytotoxicity, barrier function, the transcriptome, and the epigenome in HBECs.
Background: Allergic rhinitis (AR) is characterized by mucosal inflammation, driven by activated immune cells. Mast cells and T2 cells might decrease epithelial barrier integrity in AR, maintaining a leaky epithelial barrier.
Objective: We sought to investigate the role of histamine and T2 cells in driving epithelial barrier dysfunction in AR.
miR-146a inhibits inflammatory responses in human keratinocytes and in different mouse models of skin inflammation. Little is known about the role of miR-146b in the skin. In this study, we confirmed the increased expression of miR-146a and miR-146b (miR-146a/b) in the lesional skin of patients with psoriasis.
View Article and Find Full Text PDFBackground: Bronchial epithelial barrier leakiness and type 2 innate lymphoid cells (ILC2s) have been separately linked to asthma pathogenesis; however, the influence of ILC2s on the bronchial epithelial barrier has not been investigated previously.
Objective: We investigated the role of ILC2s in the regulation of bronchial epithelial tight junctions (TJs) and barrier function both in bronchial epithelial cells of asthmatic patients and healthy subjects and general innate lymphoid cell- and ILC2-deficient mice.
Methods: Cocultures of human ILC2s and bronchial epithelial cells were used to determine transepithelial electrical resistance, paracellular flux, and TJ mRNA and protein expressions.