This study presents the optimization of the friction stir welding (FSW) process using polynomial regression to predict the maximum tensile load (MTL) of welded joints. The experimental design included varying spindle speeds from 600 to 2200 rpm and welding speeds from 100 to 350 mm/min over 28 experimental points. The resulting MTL values ranged from 1912 to 15,336 N.
View Article and Find Full Text PDFThis study involved the optimization of the molded pieces manufacturing process from a poly-3-hydroxybutyrate-co-3-hydroxyvalerate biocomposite containing 30% wood flour by mass. The amount of wood flour and preliminary processing parameters were determined on the basis of preliminary tests. The aim of the optimization was to find the configuration of important parameters of the injection process to obtain molded pieces of good quality, in terms of aesthetics, dimensions, and mechanical properties.
View Article and Find Full Text PDFThis study optimized friction stir welding (FSW) parameters for 1.6 mm thick 2024T3 aluminum alloy sheets. A 3 × 3 factorial design was employed to explore tool rotation speeds (1100 to 1300 rpm) and welding speeds (140 to 180 mm/min).
View Article and Find Full Text PDF