The preservation of physiological transport of ions and water content is particularly important for maintaining the skin barrier, touch and pain stimuli, as well as the initiation of skin regeneration processes, especially after treatments associated with breaking skin continuity and wound healing difficulties. The aim of the study was to assess changes in ion transport, measured as values of transepithelial electric resistance and potential difference in stationary conditions and during mechanical-chemical stimulations, depending on the hydration status of isolated rabbit skin specimens. The specimens were divided into five groups: control (n = 22), dehydrated in 10% NaCl (n = 30), rehydrated after dehydration (n = 26), dried at 37°C (n = 26), and rehydrated after drying (n = 25).
View Article and Find Full Text PDFEvid Based Complement Alternat Med
January 2019
Background: Propolis and its ethanol extract show positive germicidal, bacteriostatic, and anti-inflammatory antioxidants and regenerative properties after use on the surface of the skin. Propolis is in common use in production of cosmetics and in folk medicine. The influence of this resinous mixture on ion channels, channels located in skin cells membranes and skin electrical resistance, was not explained.
View Article and Find Full Text PDFAcute, adverse skin effects to capsaicin can be activated by inhibition of sodium transport not only in nociceptive neurons, but also in keratinocytes. The aim of the current study was to describe and compare immediate (15 s) and prolonged (30 min) effects of capsaicin on epidermal (not neural) sodium transport using a rabbit skin model. Skin fragments (n = 169) were incubated in 4 conditions: undisturbed ion transport (U; n = 48); inhibited sodium transport (INa; n = 34) with amiloride used as sodium transport blocker; long-term irritation by capsaicin with undisturbed ion transport (CAPSA-U; n = 43) and with inhibited sodium transport (CAPSA-INa; n = 35).
View Article and Find Full Text PDF