Publications by authors named "Paulina Skrobuk"

Saturated fatty acids are implicated in the development of insulin resistance, whereas unsaturated fatty acids may have a protective effect on metabolism. We tested in primary human myotubes if insulin resistance induced by saturated fatty acid palmitate can be ameliorated by concomitant exposure to unsaturated fatty acid oleate. Primary human myotubes were pretreated with palmitate, oleate or their combination for 12 h.

View Article and Find Full Text PDF

Insulin resistance refers to an aberrant physiological response to insulin in its target tissues. Several signal transduction mechanisms sensing intracellular stress are activated in situations where energy supply exceeds the cells' energy requirements. This stress interferes with insulin-induced intracellular signal transduction and leads to an inflammatory state.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor (PPAR) delta is an important regulator of fatty acid (FA) metabolism. Angiopoietin-like 4 (Angptl4), a multifunctional protein, is one of the major targets of PPAR delta in skeletal muscle cells. Here we investigated the regulation of Angptl4 and its role in mediating PPAR delta functions using human, rat and mouse myotubes.

View Article and Find Full Text PDF

Thiazolidinediones (TZDs) such as rosiglitazone are widely used as antidiabetic drugs. Animal studies suggest that TZDs may have direct metabolic actions in skeletal muscle. Here, we examined if acute exposure to rosiglitazone stimulates glucose transport rate and affects proximal insulin signaling in isolated skeletal muscle strips from nondiabetic men.

View Article and Find Full Text PDF

Background: Adiponectin acts as an insulin sensitizer in rodent models. The direct effect of adiponectin in intact type 2 diabetic muscle is unknown. We examined whether adiponectin stimulates glucose transport in isolated skeletal muscle strips from type 2 diabetic men.

View Article and Find Full Text PDF

Replication of the bacterial chromosome is initiated by the binding of the DnaA protein to a unique DNA region, called oriC. Many regulatory factors in numerous species act by controlling the ability of DnaA to bind and unwind DNA, but the Helicobacter pylori genome does not contain homologues to any of these factors. Here, we describe HobA, a novel protein essential for initiation of H.

View Article and Find Full Text PDF