The optical theorem, which is a consequence of the energy conservation in scattering processes, directly relates the forward scattering amplitude to the extinction cross-section of the object. Originally derived for planar scalar waves, it neglects the complex structure of the focused beams and the vectorial nature of the electromagnetic field. On the other hand, radially or azimuthally polarized fields and various vortex beams, essential in modern photonic technologies, possess a prominent vectorial field structure.
View Article and Find Full Text PDFLight-matter interactions can be strongly modified by the surrounding environment. Here, we report on the first experimental observation of molecular spontaneous emission inside a highly non-local metamaterial based on a plasmonic nanorod assembly. We show that the emission process is dominated not only by the topology of its local effective medium dispersion, but also by the non-local response of the composite, so that metamaterials with different geometric parameters but the same local effective medium properties exhibit different Purcell factors.
View Article and Find Full Text PDFWe explore the spectral dependence of fluorescence enhancement and the associated lifetime modification of fluorescent molecules coupled to single metal nanoparticles. Fluorescence lifetime imaging microscopy and single-particle dark-field spectroscopy are combined to correlate the dependence of fluorescence lifetime reduction on the spectral overlap between the fluorescence emission and the localised surface plasmon (LSP) spectra of individual gold nanoparticles. A maximum lifetime reduction is observed when the fluorescence and LSP resonances coincide, with good agreement provided by numerical simulations.
View Article and Find Full Text PDFThe detection and processing of information carried by evanescent field components are key elements for subwavelength optical microscopy as well as single molecule sensing applications. Here, we numerically demonstrate the potential of a hyperbolic medium in the design of an efficient metamaterial antenna enabling detection and tracking of a nonlinear object, with an otherwise hidden second-harmonic signature. The presence of the antenna provides 10-fold intensity enhancement of the second harmonic generation (SHG) from a nanoparticle through a metamaterial-assisted access to evanescent second-harmonic fields.
View Article and Find Full Text PDF