Publications by authors named "Paulina Rakowska"

The increasing awareness of the significance of microbial biofilms across different sectors is continuously revealing new areas of opportunity in the development of innovative technologies in translational research, which can address their detrimental effects, as well as exploit their benefits. Due to the extent of sectors affected by microbial biofilms, capturing their real financial impact has been difficult. This perspective highlights this impact globally, based on figures identified in a recent in-depth market analysis commissioned by the UK's National Biofilms Innovation Centre (NBIC).

View Article and Find Full Text PDF

We introduce a technique for the directed transfer of molecules from an adjacent reservoir onto a sample surface inside the vacuum chamber of a ToF-SIMS instrument using gas cluster ion beam (GCIB) sputtering. An example application for matrix-enhanced secondary ion mass spectrometry (ME SIMS) is provided. This protocol has attractive features since most modern SIMS instruments are equipped with a GCIB gun.

View Article and Find Full Text PDF

Secondary ion mass spectrometry (SIMS) is gaining popularity for molecular imaging in the life sciences because it is label-free and allows imaging in two and three dimensions. The recent introduction of the OrbiSIMS has significantly improved the utility for biological imaging through combining subcellular spatial resolution with high-performance Orbitrap mass spectrometry. SIMS instruments operate in high-vacuum, and samples are typically analyzed in a freeze-dried state.

View Article and Find Full Text PDF

Correlative NanoSIMS and EM imaging of amiodarone-treated macrophages shows the internalisation of the drug at a sub-cellular level and reveals its accumulation within the lysosomes, providing direct evidence for amiodarone-induced phospholipidosis. Chemical fixation using tannic acid effectively seals cellular membranes aiding intracellular retention of diffusible drugs.

View Article and Find Full Text PDF

There is an increasing need in the pharmaceutical industry to reduce drug failure at late stage and thus reduce the cost of developing a new medicine. Since most drug targets are intracellular, this requires a better understanding of the drug disposition within a cell. Secondary ion mass spectrometry has been identified as a potentially important technique to do this, as it is label-free and allows imaging in 3D with subcellular resolution and recent studies have shown promise for amiodarone.

View Article and Find Full Text PDF

A VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study for desorption electrospray ionization mass spectrometry (DESI MS) measurements has been conducted with the involvement of 20 laboratories from 10 countries. Participants were provided with an analytical protocol and two reference samples: a thin layer of Rhodamine B and double-sided adhesive tape, each on separate glass slides. The studies comprised acquisition of positive ion mass spectra in predetermined m/z ranges.

View Article and Find Full Text PDF

Cell-penetrating peptides are promising reagents for gene and drug delivery. They can efficiently traverse the plasma membrane and deliver various cargo materials ranging from genes to nanoparticles. The functional efficiency of cargo often depends on the completeness of intracellular peptide uptake, which can be measured, but its quantification remains largely inconclusive.

View Article and Find Full Text PDF

Antimicrobial peptides are postulated to disrupt microbial phospholipid membranes. The prevailing molecular model is based on the formation of stable or transient pores although the direct observation of the fundamental processes is lacking. By combining rational peptide design with topographical (atomic force microscopy) and chemical (nanoscale secondary ion mass spectrometry) imaging on the same samples, we show that pores formed by antimicrobial peptides in supported lipid bilayers are not necessarily limited to a particular diameter, nor they are transient, but can expand laterally at the nano-to-micrometer scale to the point of complete membrane disintegration.

View Article and Find Full Text PDF

In this paper we present a chemometric method of analysis leading to isolation of Fourier transform infrared (FT-IR) spectra of biomacromolecules (HEW lysozyme, ctDNA) affected by osmolytes (trimethylamine-N-oxide and N,N,N-trimethylglycine, respectively) in aqueous solutions. The method is based on the difference spectra method primarily used to characterize the structure of solvent affected by solute. The cyclical usage of factor analysis allows precise information to be obtained on the shape of "affected spectra" of analyzed biomacromolecules.

View Article and Find Full Text PDF

In this paper, the hydration of a model protein--hen egg white lysozyme in aqueous solution has been presented. The leading method used was FTIR spectroscopy with an application of a technique of semi-heavy water (HDO) isotope dilution. Analysis of spectra of HDO isotopically diluted in water solution of lysozyme allowed us to isolate HDO spectra affected by lysozyme, and thus to characterise the energetic state of water molecules and their arrangement around protein molecules.

View Article and Find Full Text PDF

The completion of the human genome project has led to intensified efforts toward comprehensive analysis of proteomes. New possibilities exist for efficient proteomic technologies. However, primary attention is given to the discovery of new predictive biomarker patterns.

View Article and Find Full Text PDF

The biological activity of therapeutic proteins is strongly dependent on the stability of their folded state, which can easily be compromised by degradation. Oxidation is one of the most common causes of degradation and is typically associated with impairment of the native protein structure. Methionine residues stand out as particularly susceptible to oxidation by reactive oxygen intermediates even under mild conditions.

View Article and Find Full Text PDF

Intensified efforts to decipher the origin of disease at the molecular level stimulate the emergence of more efficient proteomic technologies. To complement this, attempts are being made to identify new predictive biomarkers for building more reliable biomarker patterns. As biomarker research gathers pace an immediate interest becomes focused on platforms, which although based on mainstream approaches, are more amenable to specialist tasks.

View Article and Find Full Text PDF

A selection of physicochemical and biological assays were investigated for their utility in detecting changes in preparations of Interferon alpha-2a and Interferon alpha-2b (IFN-alpha 2a, IFN-alpha 2b), which had been subjected to stressed conditions, in order to create models of biopharmaceutical products containing product-related impurities. The stress treatments, which included oxidation of methionine residues and storage at elevated temperatures for different periods of time, were designed to induce various degrees of degradation, aggregation or oxidation of the interferon. Biological activity of the stressed preparations was assessed in three different in vitro cell-based bioassay systems: a late-stage anti-proliferative assay and early-stage assays measuring reporter gene activation or endogenous gene expression by quantitative real time Reverse Transcription-Polymerase Chain Reaction (qRT-PCR).

View Article and Find Full Text PDF