In the presented study, the effectiveness of a siloxane polyether (HOL7) coating on glass against microbiological colonization was assessed using microalgae as a key component of widespread aerial biofilms. The siloxane polyether was successfully synthesized by a hydrosilylation reaction in the presence of Karstedt's catalyst. The product structure was confirmed by NMR spectroscopy and GPC analysis.
View Article and Find Full Text PDFThis research examines the biological treatment of undiluted vegetable waste digestate conducted in a bubble column photobioreactor. Initially, the bioreactor containing 3N-BBM medium was inoculated with Microglena sp., Tetradesmus obliquus, and Desmodesmus subspicatus mixture with a density of 1.
View Article and Find Full Text PDFA comparative study was carried out to assess the effect of two light sources on microalgae cultivation and the treatment of liquid digestate. The R1 photobioreactor operated with LED lightning allowed to achieve moderate nutrient removal rates whereas soluble COD (Chemical Oxygen Demand) was reduced in 90%. After switching this reactor into sunlight, the removal rate of phosphates increased to 66%.
View Article and Find Full Text PDFSupported by the examination of specimens from the entire range and by the analysis of type specimens and the diagnosis of individual names, morphological and genetic studies of the Plagiothecium curvifolium complex resulted in the conclusion that this taxon should be recognized as four separate taxa. In addition to P. curvifolium s.
View Article and Find Full Text PDFThe ability of aquatic microalgae to treat the liquid digestate obtained from the anaerobic digestion of plant waste was investigated. Microalgae were isolated from natural environment for a laboratory-scale cultivation and were then used to remove nutrients and organic contaminants from the liquid digestate. It was shown that the microalgae consortia (, sp.
View Article and Find Full Text PDFAlgal blooms are an emerging problem. The massive development of phytoplankton is driven partly by the anthropogenic eutrophication of aquatic ecosystems and the expansion of toxic cyanobacteria in planktonic communities in temperate climate zones by the continual increase in global temperature. Cyanobacterial harmful algal blooms (CyanoHABs) not only disturb the ecological balance of the ecosystem, but they also prevent the use of waterbodies by humans.
View Article and Find Full Text PDFTransformation of river and stream channels disrupts their natural ecological cycles and interrupts the continuum of their ecosystems. Changes in natural hydromorphological conditions transform lotic communities into those atypical of flowing waters, resulting in bioassessment procedures yielding incorrect results. This study shows how hydromorphological transformations of ecosystems affect the ecological status bioassessment results by disturbing diatom communities typical for rivers.
View Article and Find Full Text PDFThe gradual degradation of technical materials by bacteria, cyanobacteria and fungi, is of great economic and social significance. In temperate climates, microbial colonization is associated with phototrophic eukaryotes, predominantly aerial green algae. However, these phototrophs are able to colonize most substrates in all terrestrial environments, regardless he geographical area.
View Article and Find Full Text PDFPlagiothecium longisetum was described by Lindberg in 1872, based on Maximowicz materials from Japan. In the 1970s, this species was synonymized with P. nemorale.
View Article and Find Full Text PDFbiofilm structure is particularly difficult to eradicate, since biofilm is much more resistant to antifungal agents than planktonic cells. In this context, a more effective strategy seems to be the prevention of biofilm formation than its eradication. The aim of the study was to examine whether the process of initial colonization of materials (glass, polyethylene terephthalate, polypropylene) by food-borne sp.
View Article and Find Full Text PDFThe scientific multistep approach described herein is a result of two years of research into a control method against microbial fouling and biodeterioration of historic building materials by phototrophs. A series of tests were conducted to select the best antifouling agent for eliminating 'green' coatings and protecting surfaces against biofouling. Of the seven active compounds, two with the best penetration abilities were subjected to a photosynthetic activity inhibition test using confocal microscopy.
View Article and Find Full Text PDFThe genus Arthrospira has a long history of being used as a food source in different parts of the world. Its mass cultivation for production of food supplements and additives has contributed to a more detailed study of several species of this genus. In contrast, the type species of the genus (A.
View Article and Find Full Text PDFAerial algae are an important biological factor causing the biodegradation of building materials and facades. Conservation procedures aimed at the protection of historic and utility materials must be properly designed to avoid an increase of the degradation rate. The aim of the present study was to investigate the effect of silver nanoparticles (AgNP) synthetized with features contributing to the accessibility and toxicity (spherical shape, small size) on the most frequently occurring species of green algae in aerial biofilms and thus, the most common biodegradation factor-Apatococcus lobatus.
View Article and Find Full Text PDFAmbient springs are often cited as an example of an ecosystem with stable environmental conditions. A static biotope fosters the development of constant communities with a stable qualitative and relatively stable quantitative structure. Two years of studying cyanobacteria in different microhabitats of the rheocrenic and limnocrenic ambient springs located in urban areas showed that there is a high degree of cyanobacterial diversity and spatial and seasonal dynamics in communities.
View Article and Find Full Text PDFThe aim of this study was to select effective and safe microbiocides for the disinfection and protection of historical wooden surfaces at the former Auschwitz II-Birkenau concentration and extermination camp. We tested seven active compounds against bacteria and moulds, of which didecyldimethylammonium chloride and N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine were effective even at 0.02%-2%.
View Article and Find Full Text PDFQuaternary ammonium compounds (QACs) are widely used in disinfection of water, surfaces and instruments as well as in textile, leather and food industries because of their relatively low toxicity, broad antimicrobial spectrum, non-volatility and chemical stability. Due to these advantages, QACs are also used in restoration and can be applied on historical material. The aim of this study was to determine the usefulness of biocides based on quaternary ammonium salts and containing various excipients in the protection of historical materials against microbial growth.
View Article and Find Full Text PDFA series of cascade artificial ponds were constructed to improve the ecological status of the stream. To evaluate the effects of restoration practices, a bioassessment, based on phytobenthic algae - the diatoms, was made. Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) of diatom assemblages allowed for evaluating the influence of a series of cascade artificial ponds on stream integrity.
View Article and Find Full Text PDFThe paper presents the results of a study conducted at the Auschwitz-Birkenau State Museum in Oświęcim on the occurrence of biodeterioration. Visual assessment of the buildings revealed signs of deterioration of the buildings in the form of dampness, bulging and crumbling plaster, and wood fiber splitting. The external surfaces, and especially the concrete strips and ground immediately adjoining the buildings, were colonized by bryophytes, lichens, and algae.
View Article and Find Full Text PDFAerial phototrophs colonize materials of anthropogenic origin, thus contributing to their biodeterioration. Structures preserved at the former Auschwitz II-Birkenau concentration and extermination camp show signs of degradation by cyanobacteria and algae. In order to protect the Auschwitz-Birkenau Memorial Site, diversity of aerial phototrophs growing on the historic buildings has been studied.
View Article and Find Full Text PDFThe objective of this study was to assess biological colonization of wooden and brick buildings in the former Auschwitz II-Birkenau concentration camp, and to identify the organisms colonizing the examined buildings. Microbiological analysis did not reveal increased microbial activity, and the total microbial count of the barrack surfaces did not exceed 10 CFU/100 cm. However, certain symptoms of biodegradation of the buildings were observed.
View Article and Find Full Text PDF