Publications by authors named "Paulina Maldonado-Ruiz"

Hard ticks (family Ixodidae) are one of the most predominant arthropod disease vectors worldwide, second only to mosquitoes. In addition to harboring animal and human pathogens, ticks are known to carry a microbial community constituted of non-pathogenic organisms, which includes maternally inherited intracellular endosymbionts and other environmentally acquired extracellular microorganisms. These microbial communities, which include bacteria, viruses, protozoans, and fungi-with often commensal, mutualistic, or parasitic associations with the tick-comprise the tick microbiome, bacteria being the most studied community.

View Article and Find Full Text PDF

Tick bites, associated with the secretion of tick saliva containing the xenoglycan galactose-alpha-1, 3-galactose (alpha-gal or aGal), are recognized as the causal factors of alpha-Gal syndrome (AGS; or red meat allergy) in humans. AGS occurs after the increased production of IgE antibodies against aGal, which is found in most mammalian cells, except for the Old World monkey and humans. The aGal sensitization event has been linked to an initial tick bite, followed by consumption of red meat containing the aGal glycan, which triggers the onset of the allergic response resulting in urticaria, anaphylaxis, or even death.

View Article and Find Full Text PDF
Article Synopsis
  • Ticks are parasitic insects that feed on the blood of vertebrates and can transmit various pathogens to humans and animals.
  • In a study conducted in Colombia, researchers analyzed the bacterial and viral communities present in the tropical horse tick, revealing a variety of microorganisms, including endosymbionts and several viral families.
  • The findings indicated significant regional differences in microbial composition among tick populations from different areas, suggesting that geographical factors might influence the diversity of pathogens in ticks.
View Article and Find Full Text PDF
Article Synopsis
  • Ticks are blood-feeding ectoparasites that transmit diverse pathogens to vertebrates, including humans, yet the factors contributing to their microbial diversity remain unclear.
  • In a study on tropical horse ticks collected from different regions in Colombia, researchers identified a wide range of bacterial and viral communities using advanced sequencing techniques, revealing that the Francisellaceae family was notably prevalent.
  • The study found significant regional differences in bacterial composition among the ticks, with specific endosymbionts and viruses being linked to particular areas, indicating that environmental factors may drive the microbial diversity in tick populations.
View Article and Find Full Text PDF

Dengue fever, caused by the dengue virus (DENV), is currently a threat to about half of the world's population. DENV is mainly transmitted to the vertebrate host through the bite of a female mosquito while taking a blood meal. During this process, salivary proteins are introduced into the host skin and blood to facilitate blood acquisition.

View Article and Find Full Text PDF

Dengue virus (DENV) transmitted by the mosquitoes is the etiological agent of dengue fever, one of the fastest-growing reemerging mosquito-borne diseases on the planet with a 30-fold surge in the last five decades. Interestingly, many arthropod-borne pathogens, including DENV type 2, have been reported to contain an immunogenic glycan galactose-alpha1,3-galactose (alpha-Gal or aGal). The aGal molecule is a common oligosaccharide found in many microorganisms and in most mammals, except for humans and the Old-World primates.

View Article and Find Full Text PDF

Ticks are hematophagous ectoparasites that transmit a wide range of pathogens. The lone star tick, Amblyomma americanum, is one of the most widely distributed ticks in the Midwest and Eastern United States. Lone star ticks, as other three-host ixodid ticks, can survive in harsh environments for extended periods without a blood meal.

View Article and Find Full Text PDF

Recent studies have provided strong evidence indicating that lone star tick bites are a cause of AGS (alpha-gal syndrome, also known as red meat allergy RMA) in humans. AGS is characterized by an increase in IgE antibody production against galactose-alpha-1,3-galactose (aGal), which is a common glycan found in mammalian tissue, except in Old World monkeys and humans. The main causative factor of AGS, the lone star tick (), is broadly distributed throughout the east and midwest of the United States and is a vector of a wide range of human and animal pathogens.

View Article and Find Full Text PDF

The salivary gland of hematophagous arthropods is critical for blood meal acquisition, blood vessel localization, and secretion of digestive enzymes. Thus, there is significant interest in the regulation of salivary gland function and mechanisms driving the secretion of saliva and digestive proteins. We aimed to gain a broader understanding of the regulatory role of aminergic, cholinergic, and octopaminergic neuromodulators to saliva and protein secretion from the female A.

View Article and Find Full Text PDF

Background: The lone star tick (Amblyomma americanum), an important vector of a wide range of human and animal pathogens, is very common throughout the East and Midwest of the USA. Ticks are known to carry non-pathogenic bacteria that may play a role in their vector competence for pathogens. Several previous studies using the high throughput sequencing (HTS) technologies reported the commensal bacteria in a tick midgut as abundant and diverse.

View Article and Find Full Text PDF

Ixodid ticks are ectoparasites that feed exclusively on blood as their source of nutrients. Although ticks spend most of their life off the host, until now it has been assumed that the blood and the water vapor are the only sources of water to maintain water balance and prevent desiccation. Here we report for the first time that adult lone star ticks, Amblyomma americanum, also actively drink nutrient-free water, which greatly increases their survival.

View Article and Find Full Text PDF

Ticks are a growing concern to human and animal health worldwide and they are leading vectors of arthropod-borne pathogens in the United States. Ticks are pool blood feeders that can attach to the host skin for days to weeks using their saliva to counteract the host defenses. Tick saliva, as in other hematophagous arthropods, contains pharmacological and immunological active compounds, which modulate local and systemic immune responses and induce antibody production.

View Article and Find Full Text PDF

Tick salivary glands play critical roles in maintaining water balance for survival, as they eliminate excess water and ions during blood feeding on hosts. In the long duration of fasting in the off-host period, ticks secrete hygroscopic saliva into the mouth cavity to uptake atmospheric water vapor. Type I acini of tick salivary glands are speculated to be involved in secretion of hygroscopic saliva based on ultrastructure studies.

View Article and Find Full Text PDF