Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutation in the dystrophin gene. Currently there is no cure for DMD. We introduced a novel human Dystrophin Expressing Chimeric (DEC) cell therapy of myoblast origin and confirmed the safety and efficacy of DEC in the mouse models of DMD.
View Article and Find Full Text PDFMercury (Hg) is a heavy metal that causes a variety of toxic effects in eukaryotic cells. Previous studies have reported detrimental effects of mercury toxicity in the cardiovascular system. Given the importance of understanding the relationship between Hg and cardiovascular disease, we sought to investigate if the Hg could worsen the myocardial repercussions following ischemic injury.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is one of the most common heritable cardiovascular diseases and variants of (cardiac troponin T) are linked to increased risk of sudden cardiac arrest despite causing limited hypertrophy. In this study, a variant, R278C, was generated in both human cardiac recombinant/reconstituted thin filaments (hcRTF) and human- induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which the R278C variant affects cardiomyocytes at the proteomic and functional levels. The results of proteomics analysis showed a significant upregulation of markers of cardiac hypertrophy and remodeling in R278C vs.
View Article and Find Full Text PDFIn this perspective, we discussed emerging data indicating a role for Notch signalling in inherited disorders of the heart failure with focus on hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) linked to variants of genes encoding mutant proteins of the sarcomere. We recently reported an upregulation of elements in the Notch signalling cascade in cardiomyocytes derived from human inducible pluripotent stem cells expressing a TNNT2 variant encoding cardiac troponin T (cTnT-I79N), which induces hypertrophy, remodelling, abnormalities in excitation-contraction coupling and electrical instabilities (Shafaattalab S 2021 . , 787581.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is a cardiovascular genetic disease caused largely by sarcomere protein mutations. Gaps in our understanding exist as to how maladaptive sarcomeric biophysical signals are transduced to intra- and extracellular compartments leading to HCM progression. To investigate early HCM progression, we focused on the onset of myofilament dysfunction during neonatal development and examined cardiac dynamics, coronary vascular structure and function, and mechano-transduction signaling in mice harboring a thin-filament HCM mutation.
View Article and Find Full Text PDFIn the heart, alternative splicing of the gene produces two isoforms: IGF-IEa and IGF-IEc, (Mechano-growth factor, MGF). The sequence divergence between their E-domain regions suggests differential isoform function. To define the biological actions of MGF's E-domain, we performed analysis of the unique C-terminal sequence and identified a phosphorylation consensus site residing within a putative 14-3-3 binding motif.
View Article and Find Full Text PDFInt J Drug Discov Pharm
December 2022
We focus here on the Hippo pathway in the hierarchical sensing and modulation of the mechanical state of the adult heart in health and disease. The Hippo pathway interrogates the micro-environment of cardiac myocytes providing surveillance of the mechanical state with engagement of signaling pathways critical to homeostasis of cardiac development, remodeling, and function and vulnerable to pathologies. Our discussion centers on Hippo signaling in the altered mechanical state instigated by variants of genes expressing mutant sarcomere proteins that trigger a progression to dilated cardiomyopathy (familial DCM).
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a lethal disease caused by X-linked mutations in the dystrophin gene. Dystrophin deficiency results in progressive degeneration of cardiac, respiratory and skeletal muscles leading to premature death due to cardiopulmonary complications. Currently, no cure exists for DMD.
View Article and Find Full Text PDFDuchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in dystrophin encoding gene, causing progressive degeneration of cardiac, respiratory, and skeletal muscles leading to premature death due to cardiac and respiratory failure. Currently, there is no cure for DMD. Therefore, novel therapeutic approaches are needed for DMD patients.
View Article and Find Full Text PDFWe tested the hypothesis that isoform shifts in sarcomeres of the immature heart modify the effect of cardiac myosin-directed sarcomere inhibitors and activators. Omecamtiv mecarbil (OM) activates tension and is in clinical trials for the treatment of adult acute and chronic heart failure. Mavacamten (Mava) inhibits tension and is in clinical trials to relieve hypercontractility and outflow obstruction in advanced genetic hypertrophic cardiomyopathy (HCM), which is often linked to mutations in sarcomeric proteins.
View Article and Find Full Text PDFInt J Cardiol Cardiovasc Dis
March 2021
Serum levels of thin filament proteins, cardiac troponin T (cTnT) and cardiac troponin I (cTnI) employing high sensitivity antibodies provide a state-of-the art determination of cardiac myocyte injury in COVID-19 patients. Although there is now sufficient evidence of the value of these determinations in patients infected with SARS-CoV-2, mechanisms of their release have not been considered in depth. We summarize the importance of these mechanisms with emphasis on their relation to prognosis, stratification, and treatment of COVID-19 patients.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a progressive and lethal disease, caused by X-linked mutations of the dystrophin encoding gene. The lack of dystrophin leads to muscle weakness, degeneration, fibrosis, and progressive loss of skeletal, cardiac, and respiratory muscle function resulting in premature death due to the cardiac and respiratory failure. There is no cure for DMD and current therapies neither cure nor arrest disease progression.
View Article and Find Full Text PDFThis study evaluated the use of novel peptides derived from platelet-derived growth factor (PDGF-BB) as potential wound healing stimulants. One of the compounds (named PDGF2) was subjected for further research after cytotoxicity and proliferation assays on human skin cells. Further investigation included evaluation of: migration and chemotaxis of skin cells, immunological and allergic safety, the transcriptional analyses of adipose-derived stem cells (ASCs) and dermal fibroblasts stimulated with PDGF2, and the use of dorsal skin wound injury model to evaluate the effect of wound healing in mice.
View Article and Find Full Text PDFSmartFlare™ RNA Detection Probes from Millipore is a novel technology to detect RNA in live cells based on the use of 12 nm gold nanoparticles coated with nucleotides. We proved that SmartFlares™ are internalized by human primary lymphocytes. However, fluorescence signals from target RNA detection can only be observed in the presence of Fetal Bovine Serum (FBS) in the medium, whereas it is not detectable without FBS or when medium is supplemented with human albumin.
View Article and Find Full Text PDFPurpose: In vitro expansion is an invaluable method to obtain keratinocytes in amounts necessary for effective transplantation therapies. In vitro cell culturing provokes questions concerning potential epigenetic alterations occurring in expanded cells in the context of usefulness for transplantation and safety. The purpose of this study was to investigate as to whether keratinocyte expansion is associated with changes in the activity of genes responsible for the maintenance of epigenetic stability.
View Article and Find Full Text PDFAdipose-derived stem cells (ASCs) have become an important research model in regenerative medicine. However, there are controversies regarding the impact of prolonged cell culture on the ASCs phenotype and their differentiation potential. Hence, we studied 10 clinical ASCs replicates from plastic and oncological surgery patients, in six-passage FBS supplemented cultures.
View Article and Find Full Text PDFBackground: Epidermal progenitor cells (EPCs) have been under extensive investigation due to their increasing potential of application in medicine and biotechnology. Cultured human EPCs are used in the treatment of chronic wounds and have recently became a target for gene therapy and toxicological studies. One of the challenges in EPCs culture is to provide a high number of undifferentiated, progenitor cells displaying high viability and significant biological activity.
View Article and Find Full Text PDFA peptidomimetic called A20 (Cystapep 1) structurally based upon the N-terminal fragment of human cystatin C is known to have strong antibacterial properties. A20 is characterized by high activity against several bacterial strains often isolated from infected wounds, including methicillin-resistant S. aureus (MRSA).
View Article and Find Full Text PDFPeptide-based drugs are promising group of compounds which are characterized by specificity to their in vivo targets and high potency of action (antineoplastic, immunoregulatory, antibacterial). The peptides, however, involve a relatively high risk of allergic reactions that are not predictable on the basis of their sequence and chemical properties. In this study, peripheral blood was obtained from 53 patients including 38 hypersensitive patients and 15 control patients.
View Article and Find Full Text PDFSkin represents the largest organ of the human body and plays a crucial role in its protection from the negative impact of the outside environment, maintains its homeostasis, enables sensory interaction and thermoregulation. The traumatized skin tissue undergoes several phenotype switches due to progressive reoxygenation and release of cytokine and growth factors, that activate mechanisms of reparative processes. However, in case of wounds colonized with pathogenic microflora natural regenerative mechanisms become substantially impaired, that could lead to chronic inflammatory states with non-healing skin lesions.
View Article and Find Full Text PDFWound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing.
View Article and Find Full Text PDFStarting from the primary structure of sunflower trypsin inhibitor SFTI-1, we designed novel non-covalent inhibitors of human and yeast 20S proteasomes. Peptides with Arg residue in P1 position and two basic amino acid residues (Lys or/and Arg) in P2' and P3' positions strongly inhibited chymotrypsin-like and caspase-like activities, while trypsin-like activity was poorly modified. We found that some SFTI-1 analogues up-regulated exclusively the chymotrypsin-like activity of latent yeast 20S proteasome.
View Article and Find Full Text PDFA recently discovered population of lymphocytes, called T regulatory cells (Tregs), is characterized by expression of transcription factor Forkhead box P3 (FoxP3). These cells have been successfully used as therapeutic treatments and prophylaxis for graft-versus-host disease (GVHD) and diabetes and might become an attractive alternative to traditional immunotherapy. Here we evaluated how the type of culture medium and the type of serum can influence yield and quality of Tregs after in vitro expansion.
View Article and Find Full Text PDF