The Antarctic marine environment has a unique geologic and climatic history that has contributed to the evolution of high species diversity. Given the current trend of environmental warming, understanding the history of Antarctic species is crucial for predicting the impact of climate change on ecosystem function. Soft corals are a group of striking presence in the benthic marine assemblages in the Southern Ocean, which is recognized as a biodiversity hotspot.
View Article and Find Full Text PDFSea urchin's survival may depend on their capacity to recover proper orientation rapidly and effectively after inversion, enabling escape from predator and preventing desiccation. This righting behavior has been used as a repeatable and reliable indicator to assess echinoderms performance across environmental conditions, including thermal sensitivity and thermal stress. The current study aims at evaluating and comparing the thermal reaction norm for righting behavior (time for righting (TFR) and capacity to self-right) of three common sea urchins from high latitude, the Patagonian sea urchins Loxechinus albus and Pseudechinus magellanicus, and the Antarctic sea urchin Sterechinus neumayeri.
View Article and Find Full Text PDFIce scouring is one of the strongest agents of disturbance in nearshore environments at high latitudes. In depths, less than 20 m, grounding icebergs reshape the soft-sediment seabed by gouging furrows called ice pits. Large amounts of drift algae (up to 5.
View Article and Find Full Text PDFMarine ecosystems in the Arctic and Antarctica were once thought pristine and away from important human influence. Today, it is known that global processes as atmospheric transport, local activities related with scientific research bases, military and touristic maritime traffic, among others, are a potential source of pollutants. Macroalgae have been recognized as reliable metal-biomonitoring organisms due to their accumulation capacity and physiological responses.
View Article and Find Full Text PDFGlacier meltdown is a major environmental response to climate change in the West Antarctic Peninsula. Yet, the consequences of this process for local biodiversity are still not well understood. Here, we analyse the diversity and structure of a species-rich marine subtidal macrobenthic community (consumers and primary producers) across two abiotic environmental gradients defined by the distance from a glacier (several km) and depth (between 5 and 20 m depth) in Fildes Bay, King George Island.
View Article and Find Full Text PDFGlobal biodiversity is both declining and being redistributed in response to multiple drivers characterizing the Anthropocene, including synergies between biological invasions and climate change. The Antarctic marine benthos may constitute the last biogeographic realm where barriers (oceanographic currents, climatic gradients) have not yet been broken. Here we report the successful settlement of a cohort of Mytilus cf.
View Article and Find Full Text PDFThe edible sea urchin Loxechinus albus (Molina, 1782) is a keystone species in the littoral benthic systems of the Pacific coast of South America. The international demand for high-quality gonads of this echinoderm has led to an extensive exploitation and decline of its natural populations. Consequently, a more thorough understanding of L.
View Article and Find Full Text PDF