Publications by authors named "Paulien M de Vries"

Objective: Clinically normal hand movement with altered cerebral activation patterns in cervical dystonia (CD) may imply cerebral adaptation. Since impaired sensorimotor integration appears to play a role in dystonia, left superior parietal cortex modulation with repetitive transcranial magnetic stimulation (TMS) was employed to further challenge adaptation mechanisms reflected by changes in cerebral activation.

Methods: Seven CD patients and ten healthy controls were scanned on a 3T magnetic resonance imaging (MRI) scanner with 1 Hz inhibitory interleaved TMS.

View Article and Find Full Text PDF

The left parietal cortex contributes to goal-directed hand movement. In this study, we targeted this region with transcranial magnetic stimulation (TMS) to assess the effects on a wider distributed circuitry related to motor control. Ten healthy subjects underwent 3 Tesla functional magnetic resonance imaging (fMRI) with interleaved TMS.

View Article and Find Full Text PDF

There are quantifiable abnormalities in water diffusion properties of the white matter in thalamic and prefrontal areas in patients with idiopathic dystonia (ID). However, it is unclear which pathways are disrupted in these patients. Using probabilistic tractography of high resolution DTI, we reconstructed thalamic prefrontal pathways in seven patients with ID and seven matched controls.

View Article and Find Full Text PDF

Objectives: The relief of cervical dystonia by sensory tricks points at complex sensorimotor interaction. The relation between such stimulus-induced normalization of posture and parietal activation [Naumann M, Magyar-Lehmann S, Reiners K, Erbguth F, Leenders KL. Sensory tricks in cervical dystonia: perceptual dysbalance of parietal cortex modulates frontal motor programming.

View Article and Find Full Text PDF

Sequential ordering of purposeful movements includes distinct transitions between muscle contraction and relaxation. To explore cerebral activation patterns underlying such movement initiation and inhibition, we applied functional magnetic resonance imaging to test the effects of (1) ballistic movement (dominated by initiation), (2) movement with stepwise interruption (dominated by inhibition) and (3) smooth movements. Right-hand movements were performed by 21 healthy participants.

View Article and Find Full Text PDF

We investigated whether structural white matter abnormalities, in the form of disruption of axonal coherence and integrity as measured with diffusion tensor imaging (DTI), constitute an underlying pathological mechanism of idiopathic dystonia (ID), independent of genotype status. We studied seven subjects with ID: all had cervical dystonia as their main symptom (one patient also had spasmodic dysphonia and two patients had concurrent generalized dystonia, both DYT1-negative). We compared DTI MR images of patients with 10 controls, evaluating differences in mean diffusivity (MD) and fractional anisotropy (FA).

View Article and Find Full Text PDF